洛谷 P2704 炮兵阵地 题解

本文介绍了洛谷P2704题目的详细解题过程,包括题意、输入输出说明、样例及解题思路。主要探讨在限制条件下,如何在网格地图上最多部署炮兵部队,避免部队之间的误伤。解决方案涉及状态预处理和四重循环求解冲突问题。
摘要由CSDN通过智能技术生成

洛谷 P2704 炮兵阵地 题解

洛谷 P2704

题目

司令部的将军们打算在 N N N M M M的网格地图上部署他们的炮兵部队。一个 N N N M M M的地图由 N N N M M M列组成,地图的每一格可能是山地(用“ H H H” 表示),也可能是平原(用“ P P P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
在这里插入图片描述
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
  现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。


输入

第一行包含两个由空格分割开的正整数,分别表示 N N N M M M
 接下来的N行,每一行含有连续的 M M M个字符(‘ P P P’或者‘ H H H’),中间没有空格。按顺序表示地图中每一行的数据。 N N N≤100; M M M≤10。


输出

仅在第一行包含一个整数 K K K,表示最多能摆放的炮兵部队的数量。


样例

input
5 4
PHPP
PPHH
PPPP
PHPP
PHHP

output
6


解题思路

蓝题是例题 阿巴阿巴 😃
先保存不能放的位置
接着预处理出所有可能的状态(直接存状态的话,数组会爆)
其实是我太菜,不会滚动数组 OTATO
还要预处理出第一行和第二行的初值
接着四重循环求答案
有巨佬问我,为什么只有当前状态和当前行判断有没有冲突,因为你前面如果有冲突的话,f数组里面就不会有值啊


代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct hhx{
	int t,s;
}a[120];
char x;
int n,m,t,p[120];
long long ans,f[120][120][120];
int main()
{
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)
	    for (int j=1;j<=m;j++)
	    {
		   cin>>x;
		   if (x=='H')
		      p[i]+=1<<(j-1);
	    }
	for (int i=0;i<(1<<m);i++)
	{
		if ((i & (i<<1)) || (i & (i<<2)) || (i & (i>>1)) || (i & (i>>2)))  //要隔2个
		   continue;
	    a[++t].t=i; //保存状态
	    for (int j=i;j>0;j-=j & (-j)) a[t].s++;  //统计1
	    if (!(i & p[1])) f[1][0][t]=a[t].s;   //没有放到不能放的位置,更新答案
	} 
    for (int i=1;i<=t;i++)
        for (int j=1;j<=t;j++)
            if (!(a[i].t & a[j].t) && !(a[j].t & p[2]))   //没有跟上一行和本行不能放的冲突
               f[2][i][j]=f[1][0][i]+a[j].s;  //更新
    for (int i=3;i<=n;i++)  //行
        for (int j=1;j<=t;j++)  //当前状态
            if (!(p[i] & a[j].t))
               for (int k=1;k<=t;k++)  //上一行
                   if (!(a[j].t & a[k].t))
                      for (int z=1;z<=t;z++)  //上上行
                          if (!(a[j].t & a[z].t) && !(a[z].t & a[k].t))
                             f[i][k][j]=max(f[i][k][j],f[i-1][z][k]+a[j].s);  //状态转移
    for (int i=1;i<=t;i++)
        for (int j=1;j<=t;j++)
        ans=max(ans,f[n][i][j]);  //找答案
    cout<<ans<<endl;
    return 0;
} 

> _ <

现在已经蓝题为主,绿题为辅,不够紫题来补了么

o(╥﹏╥)o

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值