【矩阵乘法】【SSL 1530】裴波拉契数列III
题目
求数列 f [ n ] = f [ n − 1 ] + f [ n − 2 ] + 1 f[n]=f[n-1]+f[n-2]+1 f[n]=f[n−1]+f[n−2]+1的第 N N N项. f f f[1]=1, f f f[2]=1.
输入
n n n(1<4n$<2^31-1)
输出
第 N N N项的结果 m o d mod mod 9973
样例
input
12345
output
8932
解题思路
此题和这题很像
多加了1
将答案矩阵再加一列放1
所乘矩阵变为 ↓ 即可
代码
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int mo=9973;
long long n;
struct lzf{
int n,m;
long long h[5][5];
}a,b,x;
lzf operator *(lzf l,lzf y)
{
x.n=l.n,x.m=y.m;
memset(x.h,0,sizeof(x.h));
for (int k=1;k<=l.m;k++)
for (int i=1;i<=x.n;i++)
for (int j=1;j<=x.m;j++)
x.h[i][j]=(x.h[i][j]+l.h[i][k]*y.h[k][j]%mo)%mo;
return x;
}
void power(long long n)
{
if (n & 1) a=a*b;
if (n==1) return;
b=b*b;
power(n/2);
}
int main()
{
a.n=1,a.m=3;
a.h[1][1]=a.h[1][2]=a.h[1][3]=1;
b.n=3,b.m=3;
b.h[1][2]=b.h[2][1]=b.h[2][2]=b.h[3][2]=b.h[3][3]=1;
scanf("%lld",&n);
power(n-1);
printf("%lld",a.h[1][1]);
return 0;
}