[论文阅读]Motif Prediction with Graph Neural Networks, KDD, August 14-18, 2022

[论文阅读]Motif Prediction with Graph Neural Networks, KDD, August 14-18, 2022

总体介绍

本篇发表在KDD’22, August 14-18, 2022 ,作者是来自苏黎世联邦理工学院(ETH Zurich)的Maciej Besta等人。

©2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539343

链路预测问题是图挖掘的核心问题之一。最近研究强调了高阶网络分析(higher-order network analysis)的重要性,研究motif的复杂结构成为很重要的工作。现有的链路预测方案不能够很好的解决motif的预测问题,同时也为了提高准确性,所以本篇工作开发了一个基于GNN的motif预测框架。

本文的贡献如下:

(1) 识别并且公式化了对于motif预测问题的评分函数。

(2) 分别展示了如何用启发式的方法和GNN来解决motif的预测问题。

(3) 说明了GNN是比启发式方法更有效的。

准备工作

关于链接预测和图神经网络的介绍就不再赘述。这里主要介绍文中讲解的Motif预测的相关概念。

motif预测问题的建立

本篇工作定义待预测的motif为M = (Vm,Em),Vm是motif点集,Em是motif的边集,不管这条边在不在数据集里,可能已经存在,也可能不存在。

motif预测和链接预测的异同

(M)There May Be Many Potential New Motifs For a Fixed Vertex Set

就是说,链接预测是个二元问题,找的是不相连两点之间的一条链接。而motif预测的问题更复杂,因为有|Vm|个点,每两个点都有可能产生边,那么最多就有组合数C = C(|Vm|,2)条边,对于要预测的motif的选择

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值