[论文阅读]Motif Prediction with Graph Neural Networks, KDD, August 14-18, 2022
总体介绍
本篇发表在KDD’22, August 14-18, 2022 ,作者是来自苏黎世联邦理工学院(ETH Zurich)的Maciej Besta等人。
©2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539343
链路预测问题是图挖掘的核心问题之一。最近研究强调了高阶网络分析(higher-order network analysis)的重要性,研究motif的复杂结构成为很重要的工作。现有的链路预测方案不能够很好的解决motif的预测问题,同时也为了提高准确性,所以本篇工作开发了一个基于GNN的motif预测框架。
本文的贡献如下:
(1) 识别并且公式化了对于motif预测问题的评分函数。
(2) 分别展示了如何用启发式的方法和GNN来解决motif的预测问题。
(3) 说明了GNN是比启发式方法更有效的。
准备工作
关于链接预测和图神经网络的介绍就不再赘述。这里主要介绍文中讲解的Motif预测的相关概念。
motif预测问题的建立
本篇工作定义待预测的motif为M = (Vm,Em),Vm是motif点集,Em是motif的边集,不管这条边在不在数据集里,可能已经存在,也可能不存在。
motif预测和链接预测的异同
(M)There May Be Many Potential New Motifs For a Fixed Vertex Set
就是说,链接预测是个二元问题,找的是不相连两点之间的一条链接。而motif预测的问题更复杂,因为有|Vm|个点,每两个点都有可能产生边,那么最多就有组合数C = C(|Vm|,2)条边,对于要预测的motif的选择