自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(31)
  • 资源 (1)
  • 收藏
  • 关注

原创 GitHub 仓库问题及解决指南

Git与GitHub常见问题及解决方案 本文总结了GitHub仓库设置为私有、推送代码时的常见错误及解决方法。设置私有仓库步骤:进入Settings→Danger Zone→更改可见性为Private。推送代码常见错误包括: Permission denied (publickey):检查SSH密钥配置,确保密钥已添加至GitHub,并测试连接 连接超时:检查网络或配置代理 提供查看最新提交SHA的命令git log -1 --format=%H。文章为Git/GitHub用户提供了实用的问题排查指南。

2025-11-25 21:12:57 674

原创 【文献阅读】Unknown web attack threat detection based on large language model

简要总结文章的研究目标、方法、结果和结论。未知攻击对当前的网络防御系统构成了重大威胁。传统的异常用户行为检测方法依赖于显式的关联和内容信息,往往忽视了隐含的因果关系。此外,新攻击类型的频繁出现和训练数据的稀缺性限制了这些方法的有效性。本文提出了一种使用大语言模型(LLMs)检测异常用户行为的新方法,旨在在低资源条件下应对这些挑战。我们的方法从系统日志中提取隐含的因果关系,构建行为图,并采用无标签图对比不变性学习生成因果特征向量。

2025-10-10 19:07:02 912

原创 一些常见的BUG与SKILL合集

文章摘要:本文记录了日常实用技术问题的解决方案。

2025-09-25 22:56:24 318

原创 文献阅读:A survey on encrypted network traffic: A comprehensive survey of identification/classification

加密流量检测与分类是网络安全中的一个关键领域,在普遍加密的时代变得愈加重要。本文综述了结合先进的机器学习(ML)和深度学习(DL)技术,以应对强加密方法和动态网络行为带来的挑战。尽管已有显著进展,但这些技术在实际应用中仍存在较大差距,通常受到可扩展性、效率以及适应不同加密标准的限制。我们通过对7篇综述论文和82篇相关技术文献的批判性回顾,指出现有方法的不足,并提出未来研究方向。我们的分析强调了开发创新的、资源高效的模型的必要性,这些模型能够在不牺牲性能的前提下,顺利适应新的威胁和加密技术。

2025-09-18 20:39:39 1258

原创 文献阅读:CBD: A Deep-Learning-Based Scheme for Encrypted Traffic Classification with a General Pre-Trainin

随着网络环境中加密流量的迅速增长及其占比的不断提升,加密流量分类作为流量分析的重要组成部分,研究价值日益凸显。目前,在封闭环境下的加密流量分类已得到较为充分的研究,但现有分类模型大多仅适用于标注数据,难以在真实环境中推广应用。为解决上述问题,本文提出了一种具备泛化能力的可迁移模型——CBD,用于真实环境下的加密流量分类。

2025-09-18 11:58:04 873

原创 加密网络流量分类

随着网络安全重要性的日益凸显,加密流量的分类问题已成为亟待解决的挑战。传统基于字节的流量分析方法受限于刚性的粒度划分,无法充分挖掘字节之间的多样化相关性。为克服这些局限,本文提出了一种新方法 MH-Net,通过多视角异构流量图对网络流量进行分类,从而刻画流量字节之间复杂的关系。MH-Net 的核心在于将不同数量的比特聚合为多种类型的流量单元,并据此构建具有多样信息粒度的多视角流量图。通过引入不同类型的字节相关性(如首部—载荷关系),MH-Net 进一步赋予流量图以异构性,从而显著提升模型性能。

2025-09-17 12:08:11 1232

原创 一次训练两个任务:使用监督对比学习的加密网络流量分类框架

随着网络安全受到广泛关注,加密流量分类已成为当前研究的重点。然而,现有方法在进行流量分类时,往往未能充分考虑数据样本之间的共性特征,从而导致性能不佳。此外,它们通常将数据包级与流级分类任务独立训练,这种做法存在冗余,因为数据包级任务中学习到的表示实际上可以被流级任务直接利用。为此,本文提出了一种高效模型——对比学习增强的时序融合编码器(Contrastive Learning Enhanced Temporal Fusion Encoder, CLE-TFE)。

2025-09-16 18:59:45 1313

原创 题解 | 链表:BM1 反转链表

该文章展示了链表反转的Python实现。核心代码模式中,Solution类的ReverseList方法通过迭代方式反转链表:使用prev和curr指针,每次暂存curr.next后将curr.next指向prev,再移动prev和curr指针,直到遍历完链表。测试示例构造了1→2→3的链表,调用反转方法后输出结果为[3,2,1],验证了代码的正确性。该算法时间复杂度为O(n),空间复杂度为O(1)。

2025-09-14 12:59:29 188

原创 【文献阅读】MIETT: Multi-Instance Encrypted Traffic Transformer for Encrypted Traffic Classification

本文提出了一种多实例加密流量Transformer模型(MIETT),用于提升加密流量分类性能。针对现有方法在捕捉数据包间关系方面的不足,MIETT创新性地采用双层注意力机制(TLA)来建模令牌级和数据包级关联,并设计了数据包相对位置预测(PRPP)和流量对比学习(FCL)两个预训练任务以增强模型对流量动态的理解。实验表明,MIETT在五个数据集上均达到最优性能,验证了其在加密流量分类任务中的有效性。该研究为网络安全管理提供了新的技术思路。

2025-09-12 22:31:03 772

原创 国内大模型快速实现函数调用

摘要 本文介绍了如何使用阿里云百炼平台实现function calling功能。首先通过pip安装依赖库,在平台上创建实例获取API Key并配置环境变量。核心代码部分展示了如何定义函数schema、本地实现函数、用户提问后让模型决定是否调用函数,并在调用后返回结构化结果。相比OpenAI方案,该国内大模型方案无需代理且提供免费额度,适合国内开发者使用。代码示例完整展示了从函数定义到最终自然语言回答的全流程。

2025-09-12 09:06:20 256

原创 大模型变身工具达人:Function Calling实战

本文介绍了OpenAI的Function Calling功能,它允许大模型在需要时调用外部工具处理请求。文章首先解释了Function Calling的原理,即模型根据用户请求决定直接回答或发起函数调用,开发者执行函数后将结果返回给模型生成最终回答。接着提供了Python环境配置和API密钥设置方法,并展示了一个查询天气的示例代码,包括定义函数Schema、调用本地函数和模型生成自然语言回答的完整流程。最后针对服务器无法直连OpenAI API的问题,给出了通过SSH反向端口转发和设置代理的解决方案。

2025-09-09 17:47:55 532 1

原创 LangChain-ChatChat:本地知识库智能问答系统指南

它是基于LangChain 框架封装的一个本地知识库管理与对话系统。安装之后,可以快速搭建一个本地 RAG(检索增强生成)服务,让大模型(比如 DeepSeek、Qwen、ChatGLM 等)可以接入你自己的知识库。它支持多模型后端(Ollama、Xinference、FastChat、OpenAI 等),可以通过配置文件切换。

2025-09-04 19:33:38 1016

原创 【C++程序设计】多种方法求解两个数的最大公约数和最小公倍数

最大公约数(GCD:Greatest Common Divisor)和最小公倍数(LCM:Least Common Multiple)是数学中的基本概念,在编程中也经常需要用到。本文是几种计算最大公约数和最小公倍数的常见解法。

2023-03-09 20:38:54 1881 1

原创 【Web安全扫盲】初识HTTP之HTTP协议简要交互过程

1、http请求过程2、http请求方法

2023-02-16 15:44:38 951

原创 【C++程序设计】二维数组之矩阵相乘

没有关系,坚持下去。——你本来就是夜空中的繁星。

2022-10-28 23:22:57 1403 1

原创 【C++程序设计】时间类

【代码】【C++程序设计】时间类。

2022-10-28 21:07:59 812

原创 【C++基础】类 & 对象

类是 C++ 的核心特性,通常被称为用户定义的类型。它包含了数据表示法和用于处理数据的方法。

2022-09-03 23:48:50 148

原创 【NLP】初识自然语言处理

1、什么是自然语言处理?----自然语言处理(natural language processing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究实现人与计算机之间用自然语言进行有效通信的各种理论和方法。NLP是一门荣语言学、计算机科学、数学于一体的科学。NLP并不是一般的研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。----NLP主要应用于机器翻译,舆情监测,自动摘要,观点提取,文本分类,问题回答,文本语义对比,语音识

2021-12-31 13:51:26 785

原创 【现代交换技术】miniSIPServer+SIP话机实现A地拨通B地用户

背景描述:不同地区的两家公司进行通话,公司内部注册的电话皆为短号。要求是A方拨打B方长号,B方能够接通,并在B方电话上显示A方长号。反之,同理。从左到右的PC机配置如下图所示:左一PC机:(注册一台分机,号码为200.)1、SIP中继:添加一条到左二的路由。2、变换:添加自身前缀62。3、规整主叫号码分析:给主叫号码前缀为2的分机添加前缀62,即拨出去的号码为62 200。4、被叫号码分析:添加一条被叫号码前缀为0532的被叫号码分析,并选择到左二的路由。(被叫号码前缀为0532是因为此时拨出

2021-12-19 16:41:16 2090

原创 【4G_IUV】4G移动通信百山小区到万绿小区的漫游配置

逻辑:百山是开户地,用户前往万绿1、 百山的hss需要添加与万绿mme的对接配置,2、 并且添加到万绿mme的路由配置。3、 同理,万绿的mme需要添加与百山hss的对接配置,需要先创建对端mme的号码分析4、 同时添加到百山hss的路由。测试漫游成功。...

2021-12-16 09:40:24 4748

原创 【4G_IUV】4G移动通信不同核心网下的切换__千湖小区切换至万绿小区

目的:实现千湖小区到万绿小区的切换。1、 千湖mme需要添加到万绿小区的mme地址解析。2、 千湖小区需要添加到万绿小区mme的路由。(直接使用缺省路由缩短配置时间)3、 路由都是双向的,因此万绿小区也要添加到千湖小区mme的路由。(下图错误:优先级应该为1)4、 千湖和万绿配置好各自小区配置后,千湖小区需要添加邻接小区信息配置,并且添加邻接关系表。(注意事项,邻接小区信息配置一定要和对端基站的小区信息完全一致)千湖小区信息万绿小区信息千湖添加邻接小区信息配置千湖添加邻接关系表

2021-12-16 09:29:04 6170 11

原创 【4G_IUV】4G移动通信千湖小区一区业务配置

核心网连线核心网数据配置:MMESGWPGWHSS基站连线BBU数据配置

2021-12-15 16:49:24 5039

原创 【SSM项目】数据后台管理之产品信息编辑功能的实现

项目完整视频演示: https://live.csdn.net/v/182399一、修改产品信息实现逻辑。二、具体实现代码Pro-list.jspproductControllerproductServicceProMapperProMapper.xmlPro-edit.jspproductControllerproductServiceproMapperProMapper.xml...

2021-12-13 15:27:52 272 2

原创 【Paper】基于图像特征的煤矿火灾检测与识别研究

2021-12-01 19:48:14 1814

原创 【软件安装篇】数据库MySQL5.7安装与环境变量配置

一、MySQL5.7安装二、数据库配置三、MySQL5.7环境配置与验证

2021-11-25 07:30:00 319

原创 【深度学习】基于回归的YOLO算法网络结构详解

第一问:YOLOv4算法的网络整体架构图片来源:https://zhuanlan.zhihu.com/p/172121380如图所示,YOLOv4的网络架构整体分为三部分:BackBone(主干网络)、Neck、Prediction(预测)。其中主干网络包括CBM和CSP结构。CBM由Conv+BN+Mish组成。CSP又由多个CBM以及残差组件res unit组成。Neck包括CBL、SPP、上采样、Concat结构。CBL由Conv+BN+Leaky relu组成。而SPP又由多个池化层ma

2021-11-24 16:47:33 2690

原创 【python库】pytorch专题

首先,pytorch的安装在这里:https://blog.csdn.net/qq_45640219/article/details/121428503第一问:pytorch是什么?答:pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对GPU加速的深度神经网络编程。而torch是一个经典的对多维矩阵数据进行操作的张量(tensor)库,在机器学习和其他数学密集型应用有广泛应用。第二问:pytorch常用的包有哪些?答:1、torch:张量的有关运算

2021-11-22 08:00:00 1146

原创 【软件篇】Anaconda使用教程

问:anaconda怎么使用?答:当你安装好anaconda后,你的开始菜单这里会出现如下图标。Anaconda Navigator:用于管理工具包和环境的图形界面。Anaconda Prompt:用于管理包和环境的命令行界面。(类似于cmd窗口)Anaconda安装完成后,初始配置会优选添加镜像(这是因为conda服务器在国外,使用速度非常慢,需要加入国内清华的镜像。)conda config --add channels https://mirrors.tuna.tsi

2021-11-21 18:11:02 9721

原创 【软件安装篇】CUDA、cuDNN、Anaconda、pytorch安装详解以及下载安装时报错解决方法

一、验证电脑上的NVIDIA驱动是否安装成功。二、安装CUDA打开cmd窗口验证NVIDIA cuda是否安装成功(有的博客说需要安装后添加环境变量,我在添加环境变量之前验证是否安装成功,显示成功了,于是乎没有再添加其他的环境变量(我去系统变量里看了一下已经有了cuda的一些系统变量了))三、安装cuDNN四、安装Anaconda安装Anaconda注意三点: 1、 选择all users模式2、 选择安装位置3、 勾选将路径添加到环境变量里4、然后选择安

2021-11-20 08:00:00 995

原创 【软件安装篇】conda、CUDA、cuDNN六连问

第一问:什么是conda?答:简单来说吧conda就是一个辅助进行包管理和环境管理的工具,目前是anaconda默认的python包和环境管理工具,所以说只要你安装了anaconda,就默认你安装了conda。Conda既有pip的包管理功能,又有vitualenv的环境管理功能,所以可以简单看做是二者的结合。参考文章链接:https://blog.csdn.net/zhanghai4155/article/details/104215198那什么是vitualenv呢?概括地说,vitualenv

2021-11-19 10:18:57 2277 2

原创 【硬件篇】显卡五连问

问题一:NVIDIA显卡驱动是什么?答:显卡驱动就是用来驱动显卡的程序,它是硬件所对应的软件,一台电脑如果没有显卡驱动程序会导致显卡无法正常工作。问题二:那显卡又是什么?答:显卡学名是显示屏适配器,一般都是3D合成卡,作用就是分辨视频、显示画面,解析图画或者游戏。所以说没有显卡的电脑你是看不到图像的,因为图像都是有数字代码合成的,只有显卡才能对这些数字代码解析。显卡又分为核显、集显、独显,核显就是内置在CPU里面,集显就是内置在主板上,独显是单独的硬件。问题三:显卡和GPU的关系?答:GPU全

2021-11-16 20:17:20 3634

Spring_Case.7z

基于SSM框架的简单Web项目。 jdk1.8 maven3.6 tomcat8.5 mysql5.7

2021-12-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除