- 博客(2)
- 收藏
- 关注
原创 利用Numpy实现快速1:N的人脸比对
这里使用欧氏距离作为相似度判别依据,通过计算两个向量之间的欧式距离,欧式距离越小,说明两个向量越相似,也说明两张人脸越相似,根据式(3),两个向量间的欧式距离公式,通过Python实现两个维度相同的向量的欧式距离的计算如下。如上所示,已经完成并实现两个维度相同的向量的欧式距离的计算,但在实际项目中要实现的是1:N 的向量欧式距离的计算,即用一个特征向量与数据库中的N个特征向量进行计算并找出最小结果。4. 人脸特征表示:根据人脸中定位的M个特征点计算人脸特征N维向量(常见有128、256、512维等);
2023-12-26 09:07:53 1329 1
原创 DlibFaceRecognition、FaceDateset、FaceNet、LPRNet、YOLOv5、LPRData、CarPlate、人脸识别、车牌识别相关数据集
DlibFaceRecognition、FaceDateset、FaceNet、LPRNet、YOLOv5、LPRData、CarPlate、人脸识别、车牌识别相关数据集
2023-12-22 16:12:49 848 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人