HDU 3461 并查集的应用

该博客讨论了一种字符串区间修改的问题,其中涉及到区间内字符同步变化的计算。作者通过举例说明,解释了如何计算不同间隔的组合方案,并提出了区间覆盖的概念。代码实现了将相邻不相交区间合并,通过递归查找和并查集优化计算,最终求出26的幂次(代表26个字母的可能变化)减去无法覆盖的区间的数量,得出总方案数。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述

这道题最难想到就是区间内同时向上旋转的影响
举例子说明:
现有字符串:AA 可修改区间为[1,2]
因为区间内部是同步变化的,AA(间隔为0) 无论怎么变化都无法变化为AB(间隔为1)
所以实际的选择方案的数量是和各个元素之间初始的间隔有关
长度为二的区间有26中不同的间隔方式所以总的方式数目为:26

当是较长的字符串和较长的区间时:
如:ABCDEF 可修改区间为[1,3]
拿出[1,3]的区间 为 BCD
区间内的总的间隔的方案数目为 26 * 26
所以总的方案数为:26 * 26 * 26 * 26

可见只要存在一个之前区间无法覆盖的区间,则26的次方数要减一

区间覆盖其实就比较好理解了 [2,3] 和 [4,5] 这两个区间各自作用一次的效果等同于 [2.5] 这一个区间作用一次,所以可以得出的是,相邻且不相交的区间会自己合并

代码如下:

#include <iostream>
#include <algorithm>
#define LL long long 

using namespace std;

const int N = 5e7 + 10,mod = 1000000007;
int p[N],ans;

int find (int x) {
	if(x != p[x]) p[x] = find(p[x]);
	return p[x];
}

void merge(int a,int b) {
	int p_a = find(a);
	int p_b = find(b);
	//cout << a << " " << p_a << " " << b << " " << p_b << endl;
	if(p_a == p_b) return;
	
	p[p_b] = p_a;
	ans -- ; // 存在一个新的区间 次方数减一
}

LL qpow(LL a,LL b) {
	LL res = 1 % mod;
	while(b) {
		if(b & 1) res = res * a % mod;
		a = a * (LL)a % mod;
		
		b >>= 1;
	}
	return res;
}

int main(void) {
	int n,m;
	
	while(scanf("%d%d",&n,&m) != EOF) {
		 ans = n;
		 
		 for(int i = 0;i <= n;i ++) p[i] = i;
		 
		 while(m --) {
		 	int a,b;
		 	scanf("%d%d",&a,&b);
		 	
		 	merge(a - 1,b); // 就是实现跨端点区间合并
		 }
		 
		 cout << qpow(26,ans) << endl;
	}
	
	return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值