这道题最难想到就是区间内同时向上旋转的影响
举例子说明:
现有字符串:AA 可修改区间为[1,2]
因为区间内部是同步变化的,AA(间隔为0) 无论怎么变化都无法变化为AB(间隔为1)
所以实际的选择方案的数量是和各个元素之间初始的间隔有关
长度为二的区间有26中不同的间隔方式所以总的方式数目为:26
当是较长的字符串和较长的区间时:
如:ABCDEF 可修改区间为[1,3]
拿出[1,3]的区间 为 BCD
区间内的总的间隔的方案数目为 26 * 26
所以总的方案数为:26 * 26 * 26 * 26
可见只要存在一个之前区间无法覆盖的区间,则26的次方数要减一
区间覆盖其实就比较好理解了 [2,3] 和 [4,5] 这两个区间各自作用一次的效果等同于 [2.5] 这一个区间作用一次,所以可以得出的是,相邻且不相交的区间会自己合并
代码如下:
#include <iostream>
#include <algorithm>
#define LL long long
using namespace std;
const int N = 5e7 + 10,mod = 1000000007;
int p[N],ans;
int find (int x) {
if(x != p[x]) p[x] = find(p[x]);
return p[x];
}
void merge(int a,int b) {
int p_a = find(a);
int p_b = find(b);
//cout << a << " " << p_a << " " << b << " " << p_b << endl;
if(p_a == p_b) return;
p[p_b] = p_a;
ans -- ; // 存在一个新的区间 次方数减一
}
LL qpow(LL a,LL b) {
LL res = 1 % mod;
while(b) {
if(b & 1) res = res * a % mod;
a = a * (LL)a % mod;
b >>= 1;
}
return res;
}
int main(void) {
int n,m;
while(scanf("%d%d",&n,&m) != EOF) {
ans = n;
for(int i = 0;i <= n;i ++) p[i] = i;
while(m --) {
int a,b;
scanf("%d%d",&a,&b);
merge(a - 1,b); // 就是实现跨端点区间合并
}
cout << qpow(26,ans) << endl;
}
return 0;
}