时间复杂度和空间复杂度

本文介绍了算法的时间复杂度和空间复杂度,强调了时间复杂度在算法分析中的重要性。通过大O的渐进表示法,阐述了时间复杂度的计算规则,并列举了常见的时间复杂度级别。同时,提到了空间复杂度衡量算法所需额外空间,并通过实例展示了如何计算空间复杂度。最后,指出两者与排序算法的密切关系。
摘要由CSDN通过智能技术生成

在聊时间复杂度和空间复杂度之前我们先来了解一下算法的效率吧。

算法的效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

  1. 时间复杂度的概念
  2. 大O的渐进表示法
  3. 常见的时间复杂度举例

时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
大O的渐进表示法T(n)=O(f(n));
在一个算法存在最好、平均、最坏三种情况,我们一般关注的是最坏情况(最坏的情况都考虑到了,平均和最好就不用看了)而且最坏情况出现的比较频繁。
一般O(n)的计算方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除常数即可。
注意:4.递归算法的时间复杂度为:递归总次数*每次递归中基本操作执行的次数。
常见的时间复杂度有以下七种:O(1)常数型;O(log2N)对数型,O(N)线性型,O(Nlog2N)二维型,O(N2)平方型,O(N3)立方型,O(2^N)指数型。
常见的时间复杂度举例

实例1// 计算func2的时间复杂度?
void func2(int N) {
   
int count = 0;
for (int k = 0; k < 2 * N ; k++) {
   
   count++; }
int M = 10;
while ((M--) > 0) {
   
   count++; }
System.out.println(count);
}

实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例2// 计算func3的时间复杂度?
void func3(int N, int M) {
   
int count = 0;
for (int k = 0; k < M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值