import cv2
# 载入人脸检测器、眼睛检测器、微笑检测器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
smile_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml')
# 调用摄像头
cap = cv2.VideoCapture(0)
while (True):
# 获取摄像头拍摄到的画面
ret, frame = cap.read()
faces = face_cascade.detectMultiScale(frame, 1.3, 2)
img = frame
for (x, y, w, h) in faces:
# 画出人脸框,蓝色,画笔宽度微
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
# 框选出人脸区域,在人脸区域而不是全图中进行人眼检测,节省计算资源
face_area = img[y:y + h, x:x + w]
## 人眼检测
# 用人眼级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
eyes = eye_cascade.detectMultiScale(face_area, 1.3, 10)
for (ex, ey, ew, eh) in eyes:
# 画出人眼框,绿色,画笔宽度为1
cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 1)
## 微笑检测
# 用微笑级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
smiles = smile_cascade.detectMultiScale(face_area, scaleFactor=1.16, minNeighbors=65, minSize=(25, 25),
flags=cv2.CASCADE_SCALE_IMAGE)
for (ex, ey, ew, eh) in smiles:
# 画出微笑框,红色(BGR色彩体系),画笔宽度为1
cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (0, 0, 255), 1)
cv2.putText(img, 'Smile', (x, y - 7), 3, 1.2, (0, 0, 255), 2, cv2.LINE_AA)
# 实时展示效果画面
cv2.imshow('frame2', img)
# 每5毫秒监听一次键盘动作
if cv2.waitKey(5) & 0xFF == ord('q'):
break
# 最后,关闭所有窗口
cap.release()
cv2.destroyAllWindows()
opencv+python检测微笑
最新推荐文章于 2022-09-18 21:57:25 发布