Visual Studio Code配置TensorFlow的开发环境

Visual Studio Code配置TensorFlow的开发环境

本文将给出基于 Visual Studio Code的TensorFlow的开发环境的配置方法


关于使用Conda创建Python虚拟环境的方法在文章「MacBook M1 配置 tensorflow开发环境」中已经给出。

Visual Studio Code如何使用已经创建的Python虚拟环境?


Step 1 使用CMD指令查看基于Conda创建的虚拟环境所在的文件位置

代码如下:

conda info --envs

请添加图片描述

Step 2 配置Visual Studio Code的Python解释器路径

现给出用于测试的代码「需要使用TensorFlow框架,在Visual Studio Code的默认Python解释环境base下是跑不通的」

代码如下:

import tensorflow as tf
# 载入MNIST数据集
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 搭建模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
# 训练并验证模型
model.fit(x_train, y_train, epochs=5)

请添加图片描述

  1. 点击上述界面的右下角"3.8.5[‘base’:conda]"这个位置

请添加图片描述

  1. 点击上述界面的红框位置"+输入解释器路径…"

请添加图片描述

  1. 点击上述界面的红框位置"浏览…"

请添加图片描述

  1. 根据之前在命令行中所查询到的conda所创建的虚拟环境所在的路径,找到上述虚拟环境文件夹下的📃bin文件\python37,点击"选择解释器"即可。

请添加图片描述

Step 3 Visual Studio Code使用已经创建的Python虚拟环境运行程序代码

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值