Visual Studio Code配置TensorFlow的开发环境
本文将给出基于 Visual Studio Code的TensorFlow的开发环境的配置方法
文章目录
关于使用Conda创建Python虚拟环境的方法在文章「MacBook M1 配置 tensorflow开发环境」中已经给出。
Visual Studio Code如何使用已经创建的Python虚拟环境?
Step 1 使用CMD指令查看基于Conda创建的虚拟环境所在的文件位置
代码如下:
conda info --envs
Step 2 配置Visual Studio Code的Python解释器路径
现给出用于测试的代码「需要使用TensorFlow框架,在Visual Studio Code的默认Python解释环境base下是跑不通的」
代码如下:
import tensorflow as tf
# 载入MNIST数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 搭建模型
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练并验证模型
model.fit(x_train, y_train, epochs=5)
- 点击上述界面的右下角"3.8.5[‘base’:conda]"这个位置
- 点击上述界面的红框位置"+输入解释器路径…"
- 点击上述界面的红框位置"浏览…"
- 根据之前在命令行中所查询到的conda所创建的虚拟环境所在的路径,找到上述虚拟环境文件夹下的📃bin文件\python37,点击"选择解释器"即可。