1. 缓存
缓存是数据交换的缓冲区,是贮存数据的临时地方,一般读写性能较高;
其中数据库缓存,例如:索引数据,MySQL会给id创建索引,从而查询时可以在内存中快速检索,提升速度;
数据一致性成本:优先查询redis,如果数据库数据发生变化,而redis中数据是旧数据,此时读到的就是旧数据;
代码维护成本:解决缓存击穿、缓存雪崩等问题带来的代码维护成本;
2. 添加Redis缓存
查询商铺缓存的业务流程
代码示例,主要注意的是序列化的问题;
@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {
@Resource
private StringRedisTemplate stringRedisTemplate;
@Override
public Result queryById(Long id) {
String key = CACHE_SHOP_KEY + id;
//1. 从Redis中查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
//2. 判断是否存在
if(StrUtil.isNotBlank(shopJson)){
//3. 存在,直接返回
Shop bean = JSONUtil.toBean(shopJson, Shop.class);
return Result.ok(bean);
}
//4. 不存在,根据id查询数据库
Shop byId = getById(id);
if(byId == null) {
//5. 不存在,返回错误
return Result.fail("店铺不存在");
}
//6. 存在,写入Redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(byId));
//7. 返回
return Result.ok(byId);
}
}
给店铺类型添加查询缓存;
示例代码:
@Service
public class ShopTypeServiceImpl extends ServiceImpl<ShopTypeMapper, ShopType> implements IShopTypeService {
@Resource
private StringRedisTemplate stringRedisTemplate;
@Override
public Result queryTypeLists() {
//1. 从Redis中查询店铺类型缓存
String shopType = stringRedisTemplate.opsForValue().get("shopType");
//2. 判断是否存在
if(StrUtil.isNotBlank(shopType)){
//3. 存在直接返回
List<ShopType> bean = JSONUtil.toList(shopType, ShopType.class);
return Result.ok(bean);
}
//4. 不存在,查询数据库
List<ShopType> shopTypes = query().orderByAsc("sort").list();
if(shopTypes == null){
//5. 数据库不存在数据
return Result.fail("店铺不存在");
}
//6. 写入Redis
stringRedisTemplate.opsForValue().set("shopType", JSONUtil.toJsonStr(shopTypes));
//7. 返回
return Result.ok(shopTypes);
}
}
查询list时间大幅缩短;