定个小目标之刷LeetCode热题(28)

300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。  

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]

输出:4

解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。


今天是刷这道题,看题目名称就能猜到要用到动态规划思想,本题使用动态规划+二分查找进行求解,定义一个dp[i]数组,其含义表示以nums[i]结尾的递增子序列的长度为i,那么我们遍历数组,每遇到nums[i] < nums[j]时就将其放入dp数组,即dp[++i] = nums[j],如果遇到nums[i] >= nums[j],那么我们需要把dp数组中比nums[j]大的第一个数替换掉,例如下面的nums[]和dp[],会发现2,3,7,8都是递增的,都可以放入到dp[],当遍历到6时,我们需要在dp中寻找第一个比6大的数字,然后把其替换掉,如例子中第一个比6大的数是7,那么我们把7替换为6,在遍历数组过程中我们需要维护一个len用来记录dp[]的最大长度。

nums[]: 2,3,7,8,6,9

dp[]: 2,3,6,8,9

直接上代码如下,代码是使用二分查找在dp数组中找最后一个小于nums[i]的数字,并记录其索引pos,然后 dp[pos + 1] = nums[i]

class Solution {
    public int lengthOfLIS(int[] nums) {
        int length = nums.length;
        if (length == 1)
            return 1;
        int[] dp = new int[length + 1];
        int len = 1;
        dp[len] = nums[0];
        for (int i = 1; i < length; i++) {
            if (dp[len] < nums[i]) {
                dp[++len] = nums[i];
            } else {
                // 在dp数组中二分查找最后一个小于nums[i]的数字,pos记录其下标
                int l = 1, r = len, pos = 0;
                while (l <= r) {
                    int mid = (l + r) / 2;
                    if (dp[mid] < nums[i]) {
                        pos = mid;
                        l = mid + 1;
                    } else {
                        r = mid - 1;
                    }
                }
                // 把nums[i]放到dp数组中最后一个小于nums[i]元素的后一位
                dp[pos + 1] = nums[i];
            }
        }

        return len;
    }
}

题目链接:题单 - 力扣(LeetCode)全球极客挚爱的技术成长平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值