给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
今天是刷这道题,看题目名称就能猜到要用到动态规划思想,本题使用动态规划+二分查找进行求解,定义一个dp[i]数组,其含义表示以nums[i]结尾的递增子序列的长度为i,那么我们遍历数组,每遇到nums[i] < nums[j]时就将其放入dp数组,即dp[++i] = nums[j],如果遇到nums[i] >= nums[j],那么我们需要把dp数组中比nums[j]大的第一个数替换掉,例如下面的nums[]和dp[],会发现2,3,7,8都是递增的,都可以放入到dp[],当遍历到6时,我们需要在dp中寻找第一个比6大的数字,然后把其替换掉,如例子中第一个比6大的数是7,那么我们把7替换为6,在遍历数组过程中我们需要维护一个len用来记录dp[]的最大长度。
nums[]: 2,3,7,8,6,9
dp[]: 2,3,6,8,9
直接上代码如下,代码是使用二分查找在dp数组中找最后一个小于nums[i]的数字,并记录其索引pos,然后 dp[pos + 1] = nums[i]
class Solution {
public int lengthOfLIS(int[] nums) {
int length = nums.length;
if (length == 1)
return 1;
int[] dp = new int[length + 1];
int len = 1;
dp[len] = nums[0];
for (int i = 1; i < length; i++) {
if (dp[len] < nums[i]) {
dp[++len] = nums[i];
} else {
// 在dp数组中二分查找最后一个小于nums[i]的数字,pos记录其下标
int l = 1, r = len, pos = 0;
while (l <= r) {
int mid = (l + r) / 2;
if (dp[mid] < nums[i]) {
pos = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
// 把nums[i]放到dp数组中最后一个小于nums[i]元素的后一位
dp[pos + 1] = nums[i];
}
}
return len;
}
}