【笔记】二叉树的递归和非递归遍历,前中后层序

这篇博客详细介绍了二叉树的四种遍历方式:层序遍历、前序遍历、中序遍历和后序遍历。针对每种遍历,博主分别给出了递归和非递归的解题思路,通过具体链接提供了LeetCode题目以加深理解。在非递归方法中,利用队列和栈来实现,强调了关键步骤和需要注意的细节。
摘要由CSDN通过智能技术生成

一、层序遍历

https://leetcode-cn.com/problems/binary-tree-level-order-traversal/

解题方法:

  1. 借助一个队列,先把根节点入队,每次从队列中取数据入数组,然后判断左右是否为空不为空则入队
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) 
    {
        vector<vector<int>> res;
        if(root == nullptr)
            return res;
        queue<TreeNode*> que_;
        que_.push(root);
        while(!que_.empty())
        {
            size_t LevelSize = que_.size();
            TreeNode* node = nullptr;
            vector<int> tmp; 
            for(size_t i = 0; i < LevelSize; i++)
            {
                node = que_.front();
                que_.pop();
                tmp.push_back(node->val);
                if(node->left)
                    que_.push(node->left);
                if(node->right)
                    que_.push(node->right);
            }
            res.push_back(tmp);
        }
        return res;
    }
};

二、前序遍历

https://leetcode-cn.com/problems/binary-tree-preorder-traversal/

解题方法:

  1. 递归:每次递归前先插入当前节点,然后遍历左树和右树
class Solution {
public:
    vector<int> res;
    void VLR(TreeNode* root)
    {
        if(root == nullptr)
            return;
        res.push_back(root->val);
        VLR(root->left);
        VLR(root->right);
    }
    vector<int> preorderTraversal(TreeNode* root) 
    {
        VLR(root);
        return res;
    }
};
  1. 非递归:借助一个栈结构,先插入根节点,只要栈不空,就一直出栈并插入数组。根据栈的先进后出性质,要先插入右树,再插入左树
class Solution 
{
public:
    vector<int> preorderTraversal(TreeNode* root) 
    {
        vector<int> res;
        if(root == nullptr)
            return res;
        stack<TreeNode*> stc;
        stc.push(root);
        TreeNode* node = nullptr;
        while(!stc.empty())
        {
            node = stc.top();
            stc.pop();
            res.push_back(node->val);
            if(node->right)
                stc.push(node->right);
            if(node->left)
                stc.push(node->left);
        }
        return res;
    }
};

三、中序遍历

递归思路:

  1. 先遍历左树,在遍历完左树后,回溯的时候再进行插入数据
class Solution {
public:
    vector<int> res;
    void LVR(TreeNode* root)
    {
        if (root == nullptr)
            return;
        LVR(root->left);
        res.push_back(root->val);
        LVR(root->right);
    }
    vector<int> inorderTraversal(TreeNode* root) 
    {
        LVR(root);
        return res;
    }
};

非递归思路:

  1. 模拟递归,先循环遍历左树,将路径上的每个节点入栈
  2. 若已经遍历到空节点,则退出循环,取栈顶元素,并将栈顶元素插入数组
  3. 让节点指向右树:
    若右树不空,则会进入下一个遍历入栈循环
    若右树为空,则取栈顶的下一个元素
  4. 直到栈为空,或者root节点为空,则停止循环
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) 
    {
        if (root == nullptr)
        	return vector<int>();
        stack<TreeNode*> stc;
        vector<int> ans;
        while (root != nullptr || !stc.empty())
        {
        	while (root != nullptr)
        	{
				stc.push(root);
				root = root->left;
			}
			root = stc.top();
			stc.pop();
			ans.push_back(root->val);
			root = root->right;	  // 若root的右树存在, 
        }
        return ans;
    }
};

值得注意的是: 循环结束条件 !stc.empty() || cur != nullptr,在访问完左支之后可能 cur 不空,意味着右支还没访问到。

四、后序遍历

递归思路:

  1. 先递归访问左支和右支,在遍历完成左右树后,回溯的时候插入根节点
class Solution {
public:
    vector<int> res;
    void LRV(TreeNode* root)
    {
        if(root == nullptr)
            return;
        LRV(root->left);
        LRV(root->right);
        res.push_back(root->val);
    }
    vector<int> postorderTraversal(TreeNode* root) 
    {
        LRV(root);
        return res;
    }
};

非递归思路:

  1. 模拟递归,先遍历左树,将路径上的所有节点入栈
  2. 若已经遍历到空节点,则
class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) 
    {
        if (root == nullptr)
        	return vector<int>();
        stack<TreeNode*> stc;
        vector<int> ans;
        TreeNode* prev = nullptr;
       	while (root != nullptr || !stc.empty())
       	{
       		while (root != nullptr)
       		{
       			stc.push(root);
       			root = root->left;
       		}
       		TreeNode* cur = stc.top();
       		if (cur->right == nullptr || cur->right == prev)
       		{
       			stc.pop();
       			ans.push_back(cur->val);
       			prev = cur;
       		}
       		else 
       			root = cur->right;
       	}
       	return ans;
    }
};

值得注意的: 每次执行完左支后都要判断右支是否为空,或者右支是否已经被访问过。每次执行完删除操作之后,都应该让前驱节点 pre 指向 cur 节点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值