【剑指32】从上到下打印二叉树 I、II、III

本文详细介绍了三种不同的方法来打印二叉树的层序遍历,包括借助队列的基本方法和利用双端队列优化的两种方式。每种方法的时间复杂度均为O(n),空间复杂度在最坏情况下为O(n),适用于平衡二叉树。通过这些方法,可以有效地按层打印二叉树的所有节点值。
摘要由CSDN通过智能技术生成

打印二叉树 I:借助队列层序遍历:时间O(n),空间O(n)

在这里插入图片描述

时间:遍历二叉树需要O(n)的时间
空间:当为平衡二叉树时,当打印最后一层时,最多有 (n+1)/2 个节点,也就是O(n)的空间复杂度
题解:

  1. 队列初始化插入根节点
  2. 出队,把当前节点的值插入数组,如果节点左树不空则入队,右树不空则入队
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> levelOrder(TreeNode* root) 
    {
        // 层序遍历:借助队列
        vector<int> res;
        if (root == nullptr)
            return res;
        queue<TreeNode*> que;
        que.push(root);
        while (!que.empty())
        {
            TreeNode* node = que.front();
            que.pop();
            res.push_back(node->val);
            if (node->left)
                que.push(node->left);
            if (node->right)
                que.push(node->right);
        }
        return res;
    }
};

打印二叉树 II:借助队列并记录每次个数:时间O(n),空间O(n)

在这里插入图片描述
时间:遍历二叉树需要O(n)的时间
空间:当为平衡二叉树时,当打印最后一层时,最多有 (n+1)/2 个节点,也就是O(n)的空间复杂度
题解:

  1. 队列初始化插入根节点
  2. 出队,把当前节点的值插入数组,如果节点左树不空则入队,右树不空则入队
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) 
    {
        vector<vector<int>> ans;
        if (root == nullptr)
            return ans;
       queue<TreeNode*> que;
       que.push(root);
       while (!que.empty())
       {
           int n = que.size();
           vector<int> vec;
           while (n--)
           {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left)
                    que.push(node->left);
                if (node->right)
                    que.push(node->right);
           }
           ans.push_back(vec);
       }
       return ans;
    }
};

打印二叉树 III:

方法一:双端队列一次打印两层,时间O(n),空间O(n)

时间:遍历二叉树需要O(n)的时间
空间:当为平衡二叉树时,当打印最后一层时,最多有 (n+1)/2 个节点,也就是O(n)的空间复杂度

题解:

  1. 利用双端队列的特性,一个循环打印两层元素
  2. 偶数层:双端队列左端出队,右端插入。先插入每个节点的左树再插入右树
  3. 奇数层:双端队列右端出队,左端插入。先插入每个节点的右树再插入左树
    在这里插入图片描述
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) 
    {
        // 1.双端队列,一次性打印两层数据
        vector<vector<int>> ans;
        if (root == nullptr)
            return ans;
        deque<TreeNode*> que;
        que.push_back(root);
        while (!que.empty())
        {
            vector<int> vec;
            int n = que.size();
            while (n--)         			// 打印偶数层,从前出队列,并且插入队列末尾
            {
                TreeNode* node = que.front();
                que.pop_front();
                vec.push_back(node->val);
                if (node->left)
                    que.push_back(node->left);		// 先插左树再插右树
                if (node->right)
                    que.push_back(node->right);
            }
            ans.push_back(vec);
            if (que.empty())
                break;
            n = que.size();
            vec.clear();
            while (n--)        				 // 打印奇数层,从后出队列,并且插入队列首部
            {
                TreeNode* node = que.back();
                que.pop_back();
                vec.push_back(node->val);
                if (node->right)
                    que.push_front(node->right);	// 先插右树再插左树
                if (node->left)
                    que.push_front(node->left);
            }
            ans.push_back(vec);
        }
        return ans;
    }
};

方法二:队列,对奇数层进行反转

题解:

  1. 队列操作和题二一样,新增一个标志位,当遇到奇数位时,反转数组
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) 
    {
        // 2.普通队列,如果是奇数层则进行反转数据
        vector<vector<int>> ans;
        if (root == nullptr)
            return ans;
        queue<TreeNode*> que;
        que.push(root);
        int flag = 0;		// 标志位
        while (!que.empty())
        {
            int n = que.size();
            vector<int> vec;
            while (n--)
            {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left)
                    que.push(node->left);
                if (node->right)
                    que.push(node->right);
            }
            if (flag)		// 如果时奇数层则反转数组
                reverse(vec.begin(), vec.end());
            flag ^= 1;
            ans.push_back(vec);
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值