快速排序概念:交换排序
- 排序思想:分治法
- 以一个数作为基准,将所有小于该数的元素放到左边,所有大于该数的元素放到右边
- 也就是找到该数应该存在的 “位置”,然后将排序的数组分为该数之前和该数之后
- 时间复杂度
- 平均时间复杂度:O(nlogn),最坏情况下:O( n 2 n^2 n2)
- 当数据基本有序,或者数据成单只树的结构时,排序效率很低
挖坑法:
- 找到一个基准值key,从两边开始向中间遍历
- 先从右边开始往左遍历,找到比key小的值,将这个值赋值给arr[left]
- 再从左边开始往右遍历,找到比key大的值,将这个值赋值给arr[right]
- 当left == right时,就找到了key的正确位置,此时key左边的元素都小于key,右边的元素都大于key
#include <iostream>
#include <vector>
using namespace std;
class Sort
{
public:
static int Quick1(vector<int>& arr, int left, int right)
{
int key = arr[left]; // 基准值key
while (left < right)
{
while (left < right && arr[right] >= key) // 先遍历右边找到一个较小数
right--;
arr[left] = arr[right];
while (left < right && arr[left] < key) // 再遍历左边找到一个较大数
left++;
arr[right] = arr[left];
}
arr[left] = key;
return left;
}
static void QuickSort(vector<int>& arr, int left, int right)
{
if (left >= right)
return;
int pos = Quick1(arr, left, right - 1);
QuickSort(arr, left, pos);
QuickSort(arr, pos + 1, right);
}
};
int main()
{
vector<int> arr = { 4,5,1,6,2,7,3,8 };
Sort::QuickSort(arr, 0, arr.size());
return 0;
}
双指针法:
- 先找到一个基准值key,定义一个指针pos先处于left位置
- 从left+1开始向后依次遍历,当遇到比key小的元素,让pos++,并交换arr[pos] 和 arr[i] 的值
- 当遍历完数组,pos最后的位置就是key应该存在的位置,交换arr[pos] 和 arr[left]
#include <iostream>
#include <vector>
using namespace std;
class Sort
{
public:
static int Quick1(vector<int>& arr, int left, int right)
{
// 优化:找一个中间值,防止单支树的情况
int key = arr[left];
int pos = left;
for (int i = left + 1; i <= right; i++)
{
if (key > arr[i])
{
pos++;
if (pos != i) // 这里判断 pos != i,只是减少了多余的交换情况
swap(arr[i], arr[pos]);
}
}
swap(arr[left], arr[pos]);
return pos;
}
static void QuickSort(vector<int>& arr, int left, int right)
{
// 优化:数据量较小时使用直接插入排序
if (left >= right)
return;
int pos = Quick1(arr, left, right - 1);
QuickSort(arr, left, pos);
QuickSort(arr, pos + 1, right);
}
};
int main()
{
vector<int> arr = { 4,5,1,6,2,7,3,8 };
Sort::QuickSort(arr, 0, arr.size());
return 0;
}
非递归法
void QuickSortNor(vector<int>& arr, int left, int right)
{
stack<int> stc;
stc.push(left);
stc.push(right);
while (!stc.empty())
{
int end = stc.top();
stc.pop();
int begin = stc.top();
stc.pop();
int pos = _QuickSort(arr, begin, end - 1);
if (begin < pos - 1)
{
stc.push(begin);
stc.push(pos);
}
if (end > pos + 1)
{
stc.push(pos + 1);
stc.push(end);
}
}
}
优化:
- 当数据量比较少的时候:使用直接插入排序,效率高于快速排序
- 为了防止单支树(数据基本有序)的情况:每次选基准值的时候,在left、right、mid三个数中找到一个中间值作为基准
- 当递归调用层数太深,使用堆排序
// 寻找中间值
void findMid(vector<int>& arr, int left, int right)
{
int mid = ((left + right) >> 1);
if (arr[mid] > arr[left])
swap(arr[mid], arr[left]);
if (arr[mid] > arr[right])
swap(arr[mid], arr[right]);
if (arr[left] > arr[right])
swap(arr[left], arr[right]);
}
#include <iostream>
#include <vector>
using namespace std;
class Sort
{
public:
static void QuickSort(vector<int>& arr, int left, int right)
{
if (left >= right)
return;
int pos = _QuickSort(arr, left, right - 1);
QuickSort(arr, left, pos);
QuickSort(arr, pos + 1, right);
}
static void MergeSort(vector<int>& arr, int left, int right)
{
if (arr.empty())
return;
vector<int> tmp(right - left);
_MergeSort(arr, left, right - 1, tmp);
}
static void HeapSort(vector<int>& arr, int left, int right)
{
// 升序建大堆,从最后一个分支开始向下调整
int pos = (right - 2) / 2;
for (int i = pos; i >= 0; --i)
{
_AdjustDown(arr, i, right);
}
while (right--)
{
swap(arr[left], arr[right]);
_AdjustDown(arr, left, right);
}
}
private:
static void _MergeSort(vector<int>& arr, int left, int right, vector<int>& tmp)
{
if (left >= right)
return;
int mid = left + (right - left) / 2;
_MergeSort(arr, left, mid, tmp);
_MergeSort(arr, mid + 1, right, tmp);
int begin1 = left, begin2 = mid + 1;
int pos = left;
while (begin1 <= mid && begin2 <= right)
{
if (arr[begin1] <= arr[begin2])
tmp[pos++] = arr[begin1++];
else
tmp[pos++] = arr[begin2++];
}
while (begin1 <= mid)
tmp[pos++] = arr[begin1++];
while (begin2 <= right)
tmp[pos++] = arr[begin2++];
for (int i = left; i <= right; ++i)
arr[i] = tmp[i];
}
static int _QuickSort(vector<int>& arr, int left, int right)
{
// 三数取中
int key = arr[left];
// 挖坑法
while (left < right)
{
while (left < right && arr[right] >= key)
--right;
arr[left] = arr[right];
while (left < right && arr[left] < key)
++left;
arr[right] = arr[left];
}
arr[left] = key;
return left;
}
static void _AdjustDown(vector<int>& arr, int parent, int n)
{
// 将元素较大的向上调整
int child = parent * 2 + 1;
while (child < n)
{
// 找左右子树较大的
if (child + 1 < n && arr[child] < arr[child + 1])
++child;
// 如果子树值较大,则交换,否则位置已经找到返回
if (arr[parent] < arr[child])
{
swap(arr[child], arr[parent]);
parent = child;
int child = parent * 2 + 1;
}
else
return;
}
}
};
int main()
{
vector<int> arr = { 4,5,1,6,2,7,3,8 };
// Sort::QuickSort(arr, 0, arr.size());
// Sort::MergeSort(arr, 0, arr.size());
Sort::HeapSort(arr, 0, arr.size());
return 0;
}