【排序】排序

快速排序概念:交换排序

  • 排序思想:分治法
    • 以一个数作为基准,将所有小于该数的元素放到左边,所有大于该数的元素放到右边
    • 也就是找到该数应该存在的 “位置”,然后将排序的数组分为该数之前和该数之后
  • 时间复杂度
    • 平均时间复杂度:O(nlogn),最坏情况下:O( n 2 n^2 n2)
    • 当数据基本有序,或者数据成单只树的结构时,排序效率很低

挖坑法:

  1. 找到一个基准值key,从两边开始向中间遍历
  2. 先从右边开始往左遍历,找到比key小的值,将这个值赋值给arr[left]
  3. 再从左边开始往右遍历,找到比key大的值,将这个值赋值给arr[right]
  4. 当left == right时,就找到了key的正确位置,此时key左边的元素都小于key,右边的元素都大于key
#include <iostream>
#include <vector>
using namespace std;
class Sort
{
public:
    static int Quick1(vector<int>& arr, int left, int right)
    {
        int key = arr[left];	// 基准值key
        while (left < right)
        {
            while (left < right && arr[right] >= key)	// 先遍历右边找到一个较小数
                right--;
            arr[left] = arr[right];
            while (left < right && arr[left] < key)		// 再遍历左边找到一个较大数
                left++;
            arr[right] = arr[left];
        }
        arr[left] = key;
        return left;
    }
    static void QuickSort(vector<int>& arr, int left, int right)
    {
        if (left >= right)
            return;
        int pos = Quick1(arr, left, right - 1);
        QuickSort(arr, left, pos);
        QuickSort(arr, pos + 1, right);
    }
};
int main()
{
    vector<int> arr = { 4,5,1,6,2,7,3,8 };
    Sort::QuickSort(arr, 0, arr.size());
    return 0;
}

双指针法:

  1. 先找到一个基准值key,定义一个指针pos先处于left位置
  2. 从left+1开始向后依次遍历,当遇到比key小的元素,让pos++,并交换arr[pos] 和 arr[i] 的值
  3. 当遍历完数组,pos最后的位置就是key应该存在的位置,交换arr[pos] 和 arr[left]
#include <iostream>
#include <vector>
using namespace std;
class Sort
{
public:
    static int Quick1(vector<int>& arr, int left, int right)
    {
        // 优化:找一个中间值,防止单支树的情况
        int key = arr[left];
        int pos = left;
        for (int i = left + 1; i <= right; i++)
        {
            if (key > arr[i])
            {
                pos++;
                if (pos != i)		// 这里判断 pos != i,只是减少了多余的交换情况
                    swap(arr[i], arr[pos]);
            }
        }
        swap(arr[left], arr[pos]);
        return pos;
    }
    static void QuickSort(vector<int>& arr, int left, int right)
    {
        // 优化:数据量较小时使用直接插入排序
        if (left >= right)
            return;
        int pos = Quick1(arr, left, right - 1);
        QuickSort(arr, left, pos);
        QuickSort(arr, pos + 1, right);
    }
};
int main()
{
    vector<int> arr = { 4,5,1,6,2,7,3,8 };
    Sort::QuickSort(arr, 0, arr.size());
    return 0;
}

非递归法

void QuickSortNor(vector<int>& arr, int left, int right) 
{
	stack<int> stc;
	stc.push(left);
	stc.push(right);
	while (!stc.empty())
	{
		int end = stc.top();
		stc.pop();
		int begin = stc.top();
		stc.pop();

		int pos = _QuickSort(arr, begin, end - 1);
		
		if (begin < pos - 1)
		{
			stc.push(begin);
			stc.push(pos);
		}
		if (end > pos + 1)
		{
			stc.push(pos + 1);
			stc.push(end);
		}
	}
}

优化:

  • 当数据量比较少的时候:使用直接插入排序,效率高于快速排序
  • 为了防止单支树(数据基本有序)的情况:每次选基准值的时候,在left、right、mid三个数中找到一个中间值作为基准
  • 当递归调用层数太深,使用堆排序
// 寻找中间值
void findMid(vector<int>& arr, int left, int right)
{
    int mid = ((left + right) >> 1);
    if (arr[mid] > arr[left])
        swap(arr[mid], arr[left]);
    if (arr[mid] > arr[right])
        swap(arr[mid], arr[right]);
    if (arr[left] > arr[right])
        swap(arr[left], arr[right]); 
}
#include <iostream>
#include <vector>
using namespace std;
class Sort
{
public:
    static void QuickSort(vector<int>& arr, int left, int right)
    {
        if (left >= right)
            return;
        int pos = _QuickSort(arr, left, right - 1);
        QuickSort(arr, left, pos);
        QuickSort(arr, pos + 1, right);
    }
    static void MergeSort(vector<int>& arr, int left, int right)
    {
        if (arr.empty())
            return;
        vector<int> tmp(right - left);
        _MergeSort(arr, left, right - 1, tmp);
    }
    static void HeapSort(vector<int>& arr, int left, int right)
    {
        // 升序建大堆,从最后一个分支开始向下调整
        int pos = (right - 2) / 2;
        for (int i = pos; i >= 0; --i)
        {
            _AdjustDown(arr, i, right);
        }
        while (right--)
        {
            swap(arr[left], arr[right]);
            _AdjustDown(arr, left, right);
        }
    }
private:
    static void _MergeSort(vector<int>& arr, int left, int right, vector<int>& tmp)
    {
        if (left >= right)
            return;
        int mid = left + (right - left) / 2;
        _MergeSort(arr, left, mid, tmp);
        _MergeSort(arr, mid + 1, right, tmp);

        int begin1 = left, begin2 = mid + 1;
        int pos = left;

        while (begin1 <= mid && begin2 <= right)
        {
            if (arr[begin1] <= arr[begin2])
                tmp[pos++] = arr[begin1++];
            else
                tmp[pos++] = arr[begin2++];
        }
        while (begin1 <= mid)
            tmp[pos++] = arr[begin1++];
        while (begin2 <= right)
            tmp[pos++] = arr[begin2++];

        for (int i = left; i <= right; ++i)
            arr[i] = tmp[i];
    }
    static int _QuickSort(vector<int>& arr, int left, int right)
    {
        // 三数取中
        int key = arr[left];
        // 挖坑法
        while (left < right)
        {
            while (left < right && arr[right] >= key)
                --right;
            arr[left] = arr[right];
            while (left < right && arr[left] < key)
                ++left;
            arr[right] = arr[left];
        }
        arr[left] = key;
        return left;
    }
    static void _AdjustDown(vector<int>& arr, int parent, int n)
    {
        // 将元素较大的向上调整
        int child = parent * 2 + 1;
        while (child < n)
        {
            // 找左右子树较大的
            if (child + 1 < n && arr[child] < arr[child + 1])
                ++child;
            // 如果子树值较大,则交换,否则位置已经找到返回
            if (arr[parent] < arr[child])
            {
                swap(arr[child], arr[parent]);
                parent = child;
                int child = parent * 2 + 1;
            }
            else
                return;
        }
    }
};
int main()
{
    vector<int> arr = { 4,5,1,6,2,7,3,8 };
    // Sort::QuickSort(arr, 0, arr.size());
    // Sort::MergeSort(arr, 0, arr.size());
    Sort::HeapSort(arr, 0, arr.size());
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值