深度学习基础
深度学习面试篇
qq_45692660
这个作者很懒,什么都没留下…
展开
-
深度学习基础篇之标准化与归一化
1.为什么需要归一化?加快网络的收敛,避免出现梯度弥散2.归一化与标准化的区别?同:都是一种线性变化,都是按照比例在进行缩放与偏移不同:归一化是将数据归一化到[-1,1]或者[0,1]的分布,由变量的极值决定其缩放。标准化是将数据转化为均值为零当差为1的正态分布3.为什么需要进行归一化或者是标准化?加速训练(结合激活函数及其梯度进行阐述),0与100与0与10之间的区别,转换到相同的特征空间4.归一化的类型?[-1,1],[0,1],标准差标准化5.标准化之LRN、BNLRN(局部响应归原创 2021-06-08 11:23:59 · 1042 阅读 · 0 评论 -
深度学习基础篇1
1.机器学习与深度学习的区别?可从特征之间着手阐述区别2.为什么要用深层表示?可以从浅层特征与深层特征之间关系阐述3.网络更深的意义?激活函数带来的非线性所阐述。深层网络的容量4.为什么需要激活函数?1.线性函数的复杂度有限,从中学习复杂函数的映射能力有限2.将当前的特征空间通过激活函数映射到另一个空间5.为什么需要非线性的激活函数?1.w=w1@w2@w3....@wn2.输入与输出之间形成非线性映射,可以学习到更复杂的特征6.激活函数的特性?非线性、单调、可微、输出值原创 2021-06-07 23:11:44 · 198 阅读 · 2 评论