二分查找算法的原理及实现


二分查找算法是在一个数组中查询一个指定数值下标的算法方案。二分查找算法可以让数据的查询变得高效,它在很多领域及技术的底层原理中都被广泛使用到,例如 MySQL 的索引实现、JDK 中的源码实现等。

需要注意的是,并不是任何数组都满足使用二分查找算法进行数据查询的条件,二分查找算法的使用需要满足一定的前提条件。对于被二分查找的数组而言,数组必须是已经排好序的数组,但是可以忽略是正向从小到大排序还是逆向从大到小排序,因为不论是正向排序还是逆向排序,都在二分查找算法的适用范围内。

二分查找算法的实现原理

  1. 定义左边界下标与右边界下标以确定搜索范围;
  2. 循环执行二分查找进行数据查找:
    1. 获取中间下标及该下标对应的数值;
    2. 将该数值与需要查找的数值进行比较:
      • 若该数值与需要查找的数值相同,则直接返回下标;
      • 若该数值小于需要查找的数值,说明需要查找的数值数据在右,则将左边界下标定义为 中间下标+1 并重新查找;
      • 若该数值大于需要查找的数值,说明需要查找的数值数据在左,则将右边界下标定义为 中间下标-1 并重新查找;
    3. 当左下标大于右下标时结束循环(此时说明需要查找的数据在数组中并不存在);

二分查找算法的实现案例

以下是一个通过 Java 实现二分查找的方法案例:

public static int binarySearch(int[] nums, int num) {
    int left = 0;
    int right = nums.length - 1;
    while (left <= right) {
        int middle = (left + right) >>> 1;
        if (nums[middle] == num) {
            return middle;
        }
        if (nums[middle] < num) {
            left = middle + 1;
        }
        if (nums[middle] > num) {
            right = middle - 1;
        }
    }
    return -1;
}

上述案例中,通过 (left + right) >> 1 计算 middle 值,主要是为了避免整数溢出问题。在 JDK 中的 Arrays.binarySearch 也是通过 >>> 解决整数溢出问题。

定义一个 main 方法对上述方法案例进行测试:

public static void main(String[] args) {
    int[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    for (int num : nums) {
        int findNumIndex = binarySearch(nums, num);
        System.out.println("查找元素" + num + "的下标为:" + findNumIndex);
    }
}

main 方法的执行结果为:

查找元素1的下标为:0
查找元素2的下标为:1
查找元素3的下标为:2
查找元素4的下标为:3
查找元素5的下标为:4
查找元素6的下标为:5
查找元素7的下标为:6
查找元素8的下标为:7
查找元素9的下标为:8
查找元素10的下标为:9
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JiaHao汤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值