数据结构1-2:什么是算法

本文探讨了算法的本质,强调了理解算法不依赖于特定编程语言或实现方式的重要性。重点关注了算法的时间和空间复杂度,指出过大复杂度可能导致程序崩溃或运行时间过长。讨论了pow()方法的效率,并指出通常分析最坏情况复杂度的原因。同时,解释了复杂度的渐进表示法,以及为何关注上界和下界的合理选择。
摘要由CSDN通过智能技术生成

什么是算法

怎么理解描述应不依赖于任何一种计算机语 言以及具体的实现手段?

什么是好的算法

如果空间复杂度太大的话,程序可能直接爆掉了。
如果时间复杂度很大的话,可能等到世界末日都等不出结果。

当n很大的时候,它的空间是有限的,那么空间用爆了,那么它就非正常退出了。

pow()这个方法是计算累乘的方法,需要做i-1次乘法,加上这一次跟前面的系数相乘,所以每一次循环里面都执行的是i次乘法。

平均复杂度肯定是比最坏情况复杂度是要小的,但是我们一般都是分析最坏情况复杂度,因为平均复杂度的平均很难计算。

复杂度的渐进表示法:

一个函数的上界和下界不是唯一的,它可以有无穷多个。

太大的上界和太小的下界对我们分析算法是没有什么帮助的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱睡觉的小馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值