第8周作业

A/D - 区间选点 II (差分约束)

问题描述

给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点(使用差分约束系统的解法解决这道题)

Input

输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。

Output

输出一个整数表示最少选取的点的个数

Example

Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Output

6

解题思路

首先构造不等式组,记dis[i]表示数轴上[0,i]之间选点的个数
对于第i个区间[a,b],需要满足dis[b] - dis[a - 1]≥Ci
另外需要保证sum是有意义的,0≤dis[i] - dis[i - 1]≤1,因此dis[i] - dis[i - 1]≥0且dis[i-1] - dis[i ]≥ -1.
求该差分约束系统的最小解,转化为≥不等式组跑最长路,答案为dis[max{b}]

注意

spfa函数的起始点应该为min{a}-1而不是0。

代码

#include <iostream>
#include <queue>
#include <vector>
#define inf 5*1e8
using namespace std;

struct edge
{
	int to,next,w;
}e[200010];

int tot, max1, min1, head[50005], vis[50005], dis[50005];
void add(int x,int y,int w)
{
	e[++tot].to=y;
	e[tot].next=head[x];
	e[tot].w=w;
	head[x]=tot;
}

void spfa(int s) \\求最长路
{
	queue<int> q;
	for(int i = 0; i <= max1; ++i)	
		dis[i] = -inf, vis[i] = 0;
	q.push(s);
	dis[s] = 0, vis[s] = 1;\\入队标记
	while(!q.empty()) {
		int u = q.front(); 
		q.pop();
		vis[u] = 0;\\出队标记,允许重复入队
		for(int i = head[u]; i; i = e[i].next) {
			int v = e[i].to;
			if(dis[v] < dis[u] + e[i].w) {
				dis[v] = dis[u] + e[i].w;
				if(!vis[v]) {
					q.push(v);
					vis[v] = 1;
				}
			}
		}
	}
}

int main()
{
	int n, x, y, w, w1;
	scanf("%d",&n);
	tot = 1, min1 = inf, max1 = -1;
	for(int i=0;i<n;i++)
	{
		scanf("%d%d%d", &x, &y, &w);
		add(x-1, y, w);
		max1 = max(y, max1);
		min1 = min(x, min1);
	}
	for(int i=min1;i<=max1;i++)
		add(i-1, i, 0), add(i, i-1, -1);
	spfa(min1 - 1);
	printf("%d", dis[max1]);
	return 0;
}

B - 猫猫向前冲(拓扑排序)

问题描述

在一场猫咪的比赛中,一共有 N 只猫猫,编号依次为1,2,3,…,N进行比赛。已知每场比赛的结果求出字典序最小的名次序列。

Input

输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示猫猫的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即编号为 P1 的猫猫赢了编号为 P2 的猫猫。

Output

给出一个符合要求的排名。输出时猫猫的编号之间有空格,最后一名后面没有空格!

其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。

Example

Input

4 3
1 2
2 3
4 3

Output

1 2 4 3

解题思路

首先统计各节点的入度,将入度为0的点压入优先级队列(压入的时候取负,确保得到的是最小节点序)。然后依次弹出各节点,并存入名次序列中。如果在移除这一节点(以及以这一节点为起点的边)后,与该节点相连的节点的入度变为0的话, 那么就将这个顶点压入优先级队列中。不断地重复这个过程直到优先级队列为空。
然后判断名次序列的size()是否等于n,如果不等于则代表图中一定存在环路;如果等于n,那么按序输出名次序列即可。

代码

#include <iostream>
#include <queue>
#include <vector>
#define N 510
using namespace std;

int n, m, tot, in[N], head[N];
vector<int> l;
struct edge
{
	int to,next;
}e[50010];

void add(int x,int y)
{
	e[++tot].to=y;
	e[tot].next=head[x];
	head[x]=tot;
}

bool Kahn(){
	priority_queue<int> q;
	for(int i=1;i<=n;i++)
		if(in[i]==0)
			q.push(-i);
	while(!q.empty()) 
	{
		int u = 0 - q.top();
		q.pop();
		l.push_back(u);
		for(int i = head[u]; i; i = e[i].next){
			int v = e[i].to;
			if(--in[v]==0)
				q.push(-v);		
		}
	}	
	if(l.size() == n)
		return true;
	else
		return false;
} 
int main(){
	int x, y;
	while(~scanf("%d%d", &n, &m))
	{
		l.clear();
		tot = 1;
		for(int i=1;i<=n;i++)
			in[i] = 0, head[i] = 0;
		for(int i=0;i<m;i++)
		{
			scanf("%d%d", &x, &y);
			add(x, y);
			in[y]++;
		}
		if(Kahn())
		{
			for(int i=0;i<l.size();i++)
			{
				if(i!=0)
					printf(" ");
				printf("%d", l[i]);
			}
			printf("\n");
		}
	}
	return 0;	
}

C - 班长竞选 (SCC缩点)

问题描述

大学班级选班长,N 个同学均可以发表意见 若意见为 A B 则表示 A 认为 B 合适,意见具有传递性,即 A 认为 B 合适,B 认为 C 合适,则 A 也认为 C 合适 勤劳的 TT 收集了M条意见,想要知道最高票数,和所有得票最多的同学。

Input

本题有多组数据。第一行 T 表示数据组数。每组数据开始有两个整数 N 和 M (2 <= n <= 5000, 0 <m <= 30000),接下来有 M 行包含两个整数 A 和 B(A != B) 表示 A 认为 B 合适。

Output

对于每组数据,第一行输出 “Case x: ”,x 表示数据的编号,从1开始,紧跟着是最高的票数。 接下来一行输出得票最多的同学的编号,用空格隔开,不忽略行末空格!

Example

Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Output

6

解题思路

首先应求出所有的强联通分量SCC,然后再缩点求最高票数。
(1)求SCC用kosaraju算法,第一遍dfs1确定原图的逆后序序列,第二遍dfs2在反图中按照逆后序序列进行遍历(一定要注意是逆后序),每次由起点遍历到的点即构成一个SCC。
(2)缩点:求完SCC后,此时有scant个SCC,且c[i]为顶点i所在的SCC编号。此外还开辟了一个vector数组S[i],用来存放各SCC种的所有顶点。
用vector e来存放缩点图,直接存为反向的,方便之后处理。
(3)求值:缩点后不难发现对于属于第i个SCC的点来说,答案分为两部分,(令SCC[i]表示第i个SCC中点的个数)
当前SCC中的点,ans+=SCC[i]一1(去除自己);
其它SCC中的点,SUM(SCC[j]),其中j可到达i;
即ans=SCC[i]-1+sum(SCC[j]),稍加思考,可以发现最后答案一定出现在出度为0的SCC中。所以对e图中每个入度为0的点进行dfs3,求出对应的max值,即可得到答案,之后再按照要求输出得票数最多的连通分支。

注意

最后结果可能不止一个连通分支,此外应注意各同学的编号是从0 ~ n-1,而不是1 ~ n.

代码

#include <iostream>
#include <queue>
#include <vector>
#include <string.h>
#define N 5010
using namespace std;

struct edge
{
	int x, y;
};

int vis[N], f[N], c[N], in[N], k[N], num, scant; 
vector<edge> G1[N], G2[N], e[N];
vector<int> S[N];   //用于统计各强连通分支的元素个数 

void dfs1(int x){
	vis[x] = 1;
	for(int i = 0; i<G1[x].size(); i++)
	{
		int y = G1[x][i].y;
		if(!vis[y])
			dfs1(y);
	}
	f[num++] = x;
}
void dfs2(int x){
	c[x] = scant;
	for(int i = 0; i<G2[x].size(); i++)
	{
		int y = G2[x][i].y;
		if(!c[y])
			dfs2(y);
	}
	S[scant].push_back(x); 
}
void dfs3(int x, int &sum){
	vis[x] = 1;
	sum = sum + S[x].size();
	for(int i = 0; i<e[x].size(); i++)
	{
		int y = e[x][i].y;
		if(!vis[y])
			dfs3(y, sum);
	}
}

int main(){
	int T, n, m, x, y;
	scanf("%d", &T);
	for(int i=1;i<=T;i++)
	{
		scanf("%d%d", &n, &m);
		scant = 0, num = 0;
		for(int i=0;i<=n;i++)
		{
			c[i] = f[i] = vis[i] = 0;
			G1[i].clear(), G2[i].clear();
		}	
		for(int i=0;i<m;i++)
		{
			scanf("%d%d", &x, &y);
			G1[x].push_back({x, y});
			G2[y].push_back({y, x});
		}
		for(int i=0;i<n;i++)
			if(!vis[i])
				dfs1(i);
		for(int i=num-1;i>=0;i--)
			if(!c[f[i]])
				scant++, dfs2(f[i]);		
		for(int i=1;i<=scant;i++)
			in[i] = 0, e[i].clear();
		for(int i=0;i<n;i++)
			for(int j=0;j<G1[i].size();j++)
			{
				int begin =G1[i][j].x, end = G1[i][j].y;
				if(c[begin]!=c[end])
				{
					e[c[end]].push_back({c[end], c[begin]});
					in[c[begin]]++;
				}	
			}
		int sum = 0, total = 0;
		for(int i=1;i<=scant;i++)
		{
			sum = 0;
			memset(vis, 0, sizeof(vis));
			if(in[i]==0)
				dfs3(i, sum);
			total = max(sum, total);
			k[i] = sum;
		}
		priority_queue<int> q; 
		for(int i=1;i<=scant;i++)
			if(k[i]==total)
				for(int j=0;j<S[i].size();j++)
					q.push(-S[i][j]);
		if(scant == 1)
			total = S[1].size();
		printf("Case %d: %d\n", i, total - 1);
		int tas = 1;
		while(!q.empty())
		{
			if(!tas)
				printf(" ");
			else
				tas = 0;
			int rank =0 - q.top();
			q.pop();	
			printf("%d", rank);
		}
		printf("\n");
		for(int i=1;i<=scant;i++)
			S[i].clear();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值