A/D - 区间选点 II (差分约束)
问题描述
给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点(使用差分约束系统的解法解决这道题)
Input
输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。
Output
输出一个整数表示最少选取的点的个数
Example
Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Output
6
解题思路
首先构造不等式组,记dis[i]表示数轴上[0,i]之间选点的个数
对于第i个区间[a,b],需要满足dis[b] - dis[a - 1]≥Ci
另外需要保证sum是有意义的,0≤dis[i] - dis[i - 1]≤1,因此dis[i] - dis[i - 1]≥0且dis[i-1] - dis[i ]≥ -1.
求该差分约束系统的最小解,转化为≥不等式组跑最长路,答案为dis[max{b}]
注意
spfa函数的起始点应该为min{a}-1而不是0。
代码
#include <iostream>
#include <queue>
#include <vector>
#define inf 5*1e8
using namespace std;
struct edge
{
int to,next,w;
}e[200010];
int tot, max1, min1, head[50005], vis[50005], dis[50005];
void add(int x,int y,int w)
{
e[++tot].to=y;
e[tot].next=head[x];
e[tot].w=w;
head[x]=tot;
}
void spfa(int s) \\求最长路
{
queue<int> q;
for(int i = 0; i <= max1; ++i)
dis[i] = -inf, vis[i] = 0;
q.push(s);
dis[s] = 0, vis[s] = 1;\\入队标记
while(!q.empty()) {
int u = q.front();
q.pop();
vis[u] = 0;\\出队标记,允许重复入队
for(int i = head[u]; i; i = e[i].next) {
int v = e[i].to;
if(dis[v] < dis[u] + e[i].w) {
dis[v] = dis[u] + e[i].w;
if(!vis[v]) {
q.push(v);
vis[v] = 1;
}
}
}
}
}
int main()
{
int n, x, y, w, w1;
scanf("%d",&n);
tot = 1, min1 = inf, max1 = -1;
for(int i=0;i<n;i++)
{
scanf("%d%d%d", &x, &y, &w);
add(x-1, y, w);
max1 = max(y, max1);
min1 = min(x, min1);
}
for(int i=min1;i<=max1;i++)
add(i-1, i, 0), add(i, i-1, -1);
spfa(min1 - 1);
printf("%d", dis[max1]);
return 0;
}
B - 猫猫向前冲(拓扑排序)
问题描述
在一场猫咪的比赛中,一共有 N 只猫猫,编号依次为1,2,3,…,N进行比赛。已知每场比赛的结果求出字典序最小的名次序列。
Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示猫猫的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即编号为 P1 的猫猫赢了编号为 P2 的猫猫。
Output
给出一个符合要求的排名。输出时猫猫的编号之间有空格,最后一名后面没有空格!
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
Example
Input
4 3
1 2
2 3
4 3
Output
1 2 4 3
解题思路
首先统计各节点的入度,将入度为0的点压入优先级队列(压入的时候取负,确保得到的是最小节点序)。然后依次弹出各节点,并存入名次序列中。如果在移除这一节点(以及以这一节点为起点的边)后,与该节点相连的节点的入度变为0的话, 那么就将这个顶点压入优先级队列中。不断地重复这个过程直到优先级队列为空。
然后判断名次序列的size()是否等于n,如果不等于则代表图中一定存在环路;如果等于n,那么按序输出名次序列即可。
代码
#include <iostream>
#include <queue>
#include <vector>
#define N 510
using namespace std;
int n, m, tot, in[N], head[N];
vector<int> l;
struct edge
{
int to,next;
}e[50010];
void add(int x,int y)
{
e[++tot].to=y;
e[tot].next=head[x];
head[x]=tot;
}
bool Kahn(){
priority_queue<int> q;
for(int i=1;i<=n;i++)
if(in[i]==0)
q.push(-i);
while(!q.empty())
{
int u = 0 - q.top();
q.pop();
l.push_back(u);
for(int i = head[u]; i; i = e[i].next){
int v = e[i].to;
if(--in[v]==0)
q.push(-v);
}
}
if(l.size() == n)
return true;
else
return false;
}
int main(){
int x, y;
while(~scanf("%d%d", &n, &m))
{
l.clear();
tot = 1;
for(int i=1;i<=n;i++)
in[i] = 0, head[i] = 0;
for(int i=0;i<m;i++)
{
scanf("%d%d", &x, &y);
add(x, y);
in[y]++;
}
if(Kahn())
{
for(int i=0;i<l.size();i++)
{
if(i!=0)
printf(" ");
printf("%d", l[i]);
}
printf("\n");
}
}
return 0;
}
C - 班长竞选 (SCC缩点)
问题描述
大学班级选班长,N 个同学均可以发表意见 若意见为 A B 则表示 A 认为 B 合适,意见具有传递性,即 A 认为 B 合适,B 认为 C 合适,则 A 也认为 C 合适 勤劳的 TT 收集了M条意见,想要知道最高票数,和所有得票最多的同学。
Input
本题有多组数据。第一行 T 表示数据组数。每组数据开始有两个整数 N 和 M (2 <= n <= 5000, 0 <m <= 30000),接下来有 M 行包含两个整数 A 和 B(A != B) 表示 A 认为 B 合适。
Output
对于每组数据,第一行输出 “Case x: ”,x 表示数据的编号,从1开始,紧跟着是最高的票数。 接下来一行输出得票最多的同学的编号,用空格隔开,不忽略行末空格!
Example
Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Output
6
解题思路
首先应求出所有的强联通分量SCC,然后再缩点求最高票数。
(1)求SCC用kosaraju算法,第一遍dfs1确定原图的逆后序序列,第二遍dfs2在反图中按照逆后序序列进行遍历(一定要注意是逆后序),每次由起点遍历到的点即构成一个SCC。
(2)缩点:求完SCC后,此时有scant个SCC,且c[i]为顶点i所在的SCC编号。此外还开辟了一个vector数组S[i],用来存放各SCC种的所有顶点。
用vector e来存放缩点图,直接存为反向的,方便之后处理。
(3)求值:缩点后不难发现对于属于第i个SCC的点来说,答案分为两部分,(令SCC[i]表示第i个SCC中点的个数)
当前SCC中的点,ans+=SCC[i]一1(去除自己);
其它SCC中的点,SUM(SCC[j]),其中j可到达i;
即ans=SCC[i]-1+sum(SCC[j]),稍加思考,可以发现最后答案一定出现在出度为0的SCC中。所以对e图中每个入度为0的点进行dfs3,求出对应的max值,即可得到答案,之后再按照要求输出得票数最多的连通分支。
注意
最后结果可能不止一个连通分支,此外应注意各同学的编号是从0 ~ n-1,而不是1 ~ n.
代码
#include <iostream>
#include <queue>
#include <vector>
#include <string.h>
#define N 5010
using namespace std;
struct edge
{
int x, y;
};
int vis[N], f[N], c[N], in[N], k[N], num, scant;
vector<edge> G1[N], G2[N], e[N];
vector<int> S[N]; //用于统计各强连通分支的元素个数
void dfs1(int x){
vis[x] = 1;
for(int i = 0; i<G1[x].size(); i++)
{
int y = G1[x][i].y;
if(!vis[y])
dfs1(y);
}
f[num++] = x;
}
void dfs2(int x){
c[x] = scant;
for(int i = 0; i<G2[x].size(); i++)
{
int y = G2[x][i].y;
if(!c[y])
dfs2(y);
}
S[scant].push_back(x);
}
void dfs3(int x, int &sum){
vis[x] = 1;
sum = sum + S[x].size();
for(int i = 0; i<e[x].size(); i++)
{
int y = e[x][i].y;
if(!vis[y])
dfs3(y, sum);
}
}
int main(){
int T, n, m, x, y;
scanf("%d", &T);
for(int i=1;i<=T;i++)
{
scanf("%d%d", &n, &m);
scant = 0, num = 0;
for(int i=0;i<=n;i++)
{
c[i] = f[i] = vis[i] = 0;
G1[i].clear(), G2[i].clear();
}
for(int i=0;i<m;i++)
{
scanf("%d%d", &x, &y);
G1[x].push_back({x, y});
G2[y].push_back({y, x});
}
for(int i=0;i<n;i++)
if(!vis[i])
dfs1(i);
for(int i=num-1;i>=0;i--)
if(!c[f[i]])
scant++, dfs2(f[i]);
for(int i=1;i<=scant;i++)
in[i] = 0, e[i].clear();
for(int i=0;i<n;i++)
for(int j=0;j<G1[i].size();j++)
{
int begin =G1[i][j].x, end = G1[i][j].y;
if(c[begin]!=c[end])
{
e[c[end]].push_back({c[end], c[begin]});
in[c[begin]]++;
}
}
int sum = 0, total = 0;
for(int i=1;i<=scant;i++)
{
sum = 0;
memset(vis, 0, sizeof(vis));
if(in[i]==0)
dfs3(i, sum);
total = max(sum, total);
k[i] = sum;
}
priority_queue<int> q;
for(int i=1;i<=scant;i++)
if(k[i]==total)
for(int j=0;j<S[i].size();j++)
q.push(-S[i][j]);
if(scant == 1)
total = S[1].size();
printf("Case %d: %d\n", i, total - 1);
int tas = 1;
while(!q.empty())
{
if(!tas)
printf(" ");
else
tas = 0;
int rank =0 - q.top();
q.pop();
printf("%d", rank);
}
printf("\n");
for(int i=1;i<=scant;i++)
S[i].clear();
}
return 0;
}