【论文研读】【流模型】【缺陷检测】 Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection

Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection

1. 摘要

  • 领域: 缺陷检测
  • 模型:flow
  • 成就:缺陷检测排行榜第二名
  • 数据集:
    • Magnetic Tile Defects
    • MVTec AD

2.创新点

(1)提出 fully convolutional cross-scale normalizing flow (CS-Flow)模型,是基于real-NVP的流模型
(2)CS-Flow能同时处理不同尺度的特征图,处理时将多种尺度的特征图并行传入流模型,并且让它们之间相互作用
![[imgs/截屏2021-10-30 下午5.49.52.png]]

3.网络结构

(1)CNN特征提取层 – EfficientNet-B5 X -> Y ,特征提取层,在ImageNet上预训练,不参与整个网络的训练过程。

  • 输入尺寸分为三组:768*768 384*384 192*192
  • 得到三组特征图尺寸:24*24*304 12*12*304 6*6*304
    (2)流模型: Y -> Z (Z 为标准正态分布)
    在这里插入图片描述
  • 特征提取,得到三组特征图
  • 按通道数(奇偶?)划分特征图为两部分 yI、yII
  • 将三组 yI、yII输入到cross-scale convolutions模块进行仿射变换 (创新点) ![[imgs/截屏2021-10-30 下午5.52.09.png]]
  • 沿通道数拼接

(3)细节:

  • coupling block使用 real-NVP的结构
  • y out  , 2 = y in  , 2 ⊙ e γ 1 s 1 ( y in  , 1 ) + γ 1 t 1 ( y in  , 1 ) y out  , 1 = y in  , 1 ⊙ e γ 1 s 2 ( y out  , 2 ) + γ 2 t 2 ( y out  , 2 ) \begin{array}{c} \boldsymbol{y}_{\text {out }, 2}=\boldsymbol{y}_{\text {in }, 2} \odot e^{\gamma_{1} s_{1}\left(\boldsymbol{y}_{\text {in }, 1}\right)}+\gamma_{1} t_{1}\left(\boldsymbol{y}_{\text {in }, 1}\right) \\ \boldsymbol{y}_{\text {out }, 1}=\boldsymbol{y}_{\text {in }, 1} \odot e^{\gamma_{1} s_{2}\left(\boldsymbol{y}_{\text {out }, 2}\right)}+\gamma_{2} t_{2}\left(\boldsymbol{y}_{\text {out }, 2}\right) \end{array} yout ,2=yin ,2eγ1s1(yin ,1)+γ1t1(yin ,1)yout ,1=yin ,1eγ1s2(yout ,2)+γ2t2(yout ,2)
  • we introduce the learnable block-individual scalar coefficients γ1 and γ2
  • soft-clamping
    • σ α ( h ) = 2 α π arctan ⁡ h α \sigma_{\alpha}(h)=\frac{2 \alpha}{\pi} \arctan \frac{h}{\alpha} σα(h)=π2αarctanαh
    • 将输出限制在 (−α, α) 之间

(4)损失函数:

  • change of variable公式:
    • p Y ( y ) = p Z ( z ) ∣ det ⁡ ∂ z ∂ y ∣ p_{Y}(\boldsymbol{y})=p_{Z}(\boldsymbol{z})\left|\operatorname{det} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{y}}\right| pY(y)=pZ(z)detyz
  • log ⁡ p Y ( y ) = log ⁡ p Z ( z ) + log ⁡ ∣ det ⁡ ∂ z ∂ y ∣ \log p_{Y}(\boldsymbol{y})=\log p_{Z}(\boldsymbol{z})+\log \left|\operatorname{det} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{y}}\right| logpY(y)=logpZ(z)+logdetyz
  • L ( y ) = − log ⁡ p Y ( y ) = ∥ z ∥ 2 2 2 − log ⁡ ∣ det ⁡ ∂ z ∂ y ∣ \mathcal{L}(\boldsymbol{y})=-\log p_{Y}(\boldsymbol{y})=\frac{\|\boldsymbol{z}\|_{2}^{2}}{2}-\log \left|\operatorname{det} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{y}}\right| L(y)=logpY(y)=2z22logdetyz

4.实验

(1)参数设置

  • 特征提取层:the output of layer 36 of EfficientNet-B5
  • MVTec AD, we use features at s = 3 scales with input image sizes of 768 × 768, 384 × 384 and 192 × 192 pixels,通道数:304
  • MTD samples, we resized the images to 384 × 384, 192 × 192 and 96 × 96 pixels
  • nblocks = 4 coupling blocks
    • 3*3卷积(3层)+5*5卷积(1层)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值