TensorFlow2学习笔记,0基础详解(1)梯度下降算法原理
一.神经网络模型可以理解为,给定多个输入,然后给定每个输入不同的权重值,和一定的偏置,最终可以给出一个输出。如图,x就是我们的输入,w就是为不同的输入分配的权重值,b就是我们的偏置,最后就可以得到我们的输出y。如果用矩阵的形式来看,可以用下面的图来表示:我们给定输入的特征x,这个时候我们为了得到准确的输出y,前提是我们的w和b是准确可靠的。所以我们训练神经网络的过程就是找到这个w和b的过程。二.梯度下降算法如何得到准确的w和b呢,这里我们使用到的是梯度下降算法。首先我们先介绍损失函数的定义
原创
2020-08-30 12:07:45 ·
764 阅读 ·
0 评论