每日论文阅读(1)-基于UWB定位方向

IEEE论文

单基站定位

  • TIM Full Coverage 3D Indoor Positioning System Based on a Rotating dual-Ultra-Wide-Band Platform(基于旋转双超宽带平台的全覆盖3D室内定位系统)
    In this work, we propose a full-coverage 3D positioning strategy based on a novel single-anchor rotating Ultra-Wide-Band (UWB) system. Unlike traditional positioning strategies, the proposed positioning strategy utilizes only a single UWB base station to achieve full-coverage 3D tag positioning within the effective communication range. This approach effectively simplifies the setup process and reduces the deployment costs of the positioning system. The designed UWB base station consists of a motor-driven rotating platform, two UWB modules with angle measurement capabilities, and a primary control unit for the system. The rotating platform provides a full 360° range of tag signal coverage, which substantially broadens the coverage compared to the 120° typically offered by antennas built in traditional single base station strategies. The inclusion of two UWB modules with angle measurement capabilities can improve the accuracy of the positioning. The primary control unit of the system would manage these components to ensure smooth operations. Moreover, the tag module is equipped with a UWB transceiver that boasts an effective communication distance of 300 meters, which significantly extends the coverage area. Based on the hardware design, we further propose a positioning method that incorporates a 3D circle estimation method and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. Experimental results demonstrate that our designed UWB base station (anchor) can provide a full coverage 3D tag positioning solution and a competitive positioning accuracy performance in a practical application testbed.
    在本文中,我们提出了一种基于新型单锚旋转超宽带 (UWB) 系统的全覆盖 3D 定位策略。与传统定位策略不同,所提出的定位策略仅使用单个 UWB 基站即可在有效通信范围内实现全覆盖 3D 标签定位。这种方法有效地简化了设置过程并降低了定位系统的部署成本。设计的 UWB 基站由一个电机驱动的旋转平台、两个具有角度测量功能的 UWB 模块和一个系统主控制单元组成。旋转平台提供 360° 的全范围标签信号覆盖,与传统单基站策略中内置天线通常提供的 120° 相比,覆盖范围大大扩大。包含两个具有角度测量功能的 UWB 模块可以提高定位的准确性。系统的主控制单元将管理这些组件以确保平稳运行。此外,标签模块配备了一个 UWB 收发器,其有效通信距离为 300 米,大大扩大了覆盖范围。在硬件设计的基础上,我们进一步提出了一种结合三维圆估计方法和基于密度的带噪声应用空间聚类 (DBSCAN) 算法的定位方法。实验结果表明,我们设计的 UWB 基站 (锚点) 可以在实际应用测试平台上提供全覆盖的三维标签定位解决方案和具有竞争力的定位精度性能。

UWB定位

  • 2024 12th International Conference on Information Systems and Computing Technology (ISCTech) 基于卡尔曼滤波和IPSO算法的UWB定位算法
    针对超宽带(UWB)设备易受环境干扰而产生定位误差的问题,本文首先使用卡尔曼滤波对测距值进行处理,消除环境中噪声干扰造成的错误测距值,然后使用高斯滤波对测距值进行处理,提高测距精度,再通过Chan算法求解初始坐标,将此坐标作为改进粒子群算法的搜索初值,进一步求解得到较为精确的坐标值,并以算法的均方误差(RMSE)来衡量定位精度;再将此坐标作为改进粒子群算法的搜索初值,进一步求解得到较为精确的坐标值,并以均方误差(RMSE)来衡量算法的定位精度。通过实验,在有信号干扰的情况下,该算法的测距误差较Chan算法降低了63.4%,较Chan-Kalman算法降低了26.7%,其测距误差在厘米级,可以断定该算法可以有效解决在有干扰的情况下提高UWB室内定位精度的问题。

  • 2024 3rd International Symposium on Sensor Technology and Control (ISSTC) 基于双层双向GRU网络的UWB室内定位优化方法
    超宽带技术具有传输速度快、抗干扰能力强等特点,在高精度室内定位中得到广泛应用。然而超宽带技术用于室内环境定位时,非视距、多径等干扰因素的存在严重影响超宽带测距精度和信号稳定性。为了改善超宽带技术在复杂环境下定位精度下降的问题,本文提出一种基于双层双向门控循环细胞网络模型的定位方法,利用定位目标动态运动的时间-位置序列特性,从历史数据中提取运动特征,并设计网络结构参数验证其有效性。实验结果表明,基于该GRU模型的超宽带定位精度分别比多项式拟合算法、单向GRU模型、双向GRU模型提高56.75%、50.64%、18.2%,定位效果更佳。

NLOS识别

  • TIM Fuzzy Transformer Machine Learning for UWB NLOS Identification and Ranging Mitigation(用于 UWB NLOS 识别和测距缓解的模糊变压器机器学习)!!!
    中国矿业大学杨宏超、孙猛
    Ultrawideband (UWB) is a high-precision positioning and navigation technology, it faces significant challenges due to the abundance of non-line-of-sight (NLOS) conditions in complex indoor environments. In this study, we introduce the bidirectional encoder representations from transformers (BERTs) to identify and mitigate the impact of NLOS paths using the channel impulse response (CIR). We derive three new CIR features that comprise both the time and energy characteristics of CIR sequences. These proposed features are fused with fuzzy probabilities into BERT (F-BERT), in order to identify the NLOS paths. Based on the NLOS identification results from F-BERT, a ranging classification and mitigation strategy with another BERT is further designed to enhance the ranging and positioning accuracy. The experimental results indicate that F-BERT outperforms state-of-the-art algorithms such as least-squares support vector machine (LS-SVM), convolutional neural network (CNN), and CNN with long short-term memory (CNN-LSTM) by 12.5%, 13.9%, and 14.9%, respectively, in terms of NLOS identification accuracy with LOS and NLOS recall. The proposed BERT also outperforms the existing algorithms by 36.2% in ranging error reduction in an NLOS environment. Furthermore, our proposed algorithms similarly outperform existing algorithms in mean positioning accuracy by 37.9%. Finally, our BERT algorithms achieve generality as, although they were trained in one environment, they are shown to still work well in another unknown environment.
    超宽带 (UWB) 是一种高精度定位和导航技术,由于复杂的室内环境中存在大量非视距 (NLOS) 条件,它面临着重大挑战。在本研究中,我们引入了来自变换器 (BERT) 的双向编码器表示,以使用信道脉冲响应 (CIR) 来识别和减轻 NLOS 路径的影响。我们推导出三个新的 CIR 特征,它们包含 CIR 序列的时间和能量特性。这些提出的特征与模糊概率融合到 BERT (F-BERT) 中,以识别 NLOS 路径。基于 F-BERT 的 NLOS 识别结果,进一步设计了与另一个 BERT 的测距分类和缓解策略,以提高测距和定位精度。实验结果表明,在 NLOS 识别准确率(包括 LOS 和 NLOS 召回率)方面,F-BERT 分别比最小二乘支持向量机 (LS-SVM)、卷积神经网络 (CNN) 和长短期记忆 CNN (CNN-LSTM) 等最新算法高出 12.5%、13.9% 和 14.9%。在 NLOS 环境下的测距误差减少方面,所提出的 BERT 也比现有算法高出 36.2%。此外,我们提出的算法在平均定位准确率方面也比现有算法高出 37.9%。最后,我们的 BERT 算法实现了通用性,因为尽管它们是在一个环境中训练的,但它们在另一个未知环境中仍然表现出色。

UWB与IMU、轮速计融合定位

  • Sensors journal 用于UWB定位的稳健误差状态 Sage-Husa 自适应卡尔曼滤波器
    作者之前专门研究过(ANFIS)结构
    鉴于传感器的路径和干扰缓解能力,基于超宽带 (UWB) 的定位系统已表现出较高的精度和可靠性。这项工作旨在通过将运动模型修改为使用 IMU 和车轮编码器运动融合控制输入的 3D 地面差速驱动机器人来改进先前工作中提出的 Sage-Husa 模糊自适应滤波器 (SHFAF)。除了改变运动模型运动学之外,本文还改进了动态估计过程中对 P 和 R 的正定约束,从而使滤波器对异常值更具鲁棒性。基于自适应神经模糊推理系统 (ANFIS) 结构,开发了 SHFAF 模糊逻辑系统的计算和推导改进方法,并使用梯度下降训练模糊系统以提高系统的准确性。使用配备 Qorvo UWB 传感器和静态节点的 Clearpath Jackal 机器人的真实数据进行了实验验证。在定位精度方面,所提出的基于速度的 SHFAF(VelSHFAF)系统在两个测试过程中比之前的 SHFAF 实现分别高出约 30% 和 25%,证明了其增强的性能和可靠性。
  • Transactions on Network Science and Engineering 用于室内定位的混合 EKF/WUFIR 滤波器,集成 INS 和 UWB 数据
    由于室内环境复杂多变,超宽带(UWB)信号传输常常受到墙壁和障碍物的阻碍,造成非视距(NLOS),降低定位精度。惯性导航系统(INS)是一种不依赖外界信息、不受NLOS影响的自主导航系统。因此,提出了一种融合INS和UWB数据的混合EKF/WUFIR滤波室内定位算法。所提算法由INS定位、UWB定位和数据融合三部分组成。在INS定位部分,利用从惯性测量单元(IMU)获得的测量数据,利用运动模型实时确定目标的状态。在UWB定位部分,提出了一种可重置残差加权粒子滤波算法来减轻NLOS对定位结果的影响。在数据融合部分,提出了一种扩展卡尔曼滤波(EKF)和加权无偏有限脉冲响应(WUFIR)滤波的混合滤波算法来融合INS和UWB定位数据。仿真和实验结果表明,该算法在鲁棒性和定位精度方面优于其他对比算法。
  • Communications Letters 通过学习时空和几何特征实现基于图网络的 UWB 定位
    在本文中,我们提出了一种图注意力循环神经网络 (Graph-ARNN),通过结合空间、时间和几何信息来改善复杂环境中的 UWB 定位。我们首先将 UWB 传感器的测距测量构建为大型时空图结构,然后设计包括图卷积模型、图注意力模型和深度 RNN 模型的 Graph-ARNN 来提取有利于标签位置估计的高级时空和几何特征。因此,可以提高定位性能。我们还在 LOS 和 NLOS 环境中进行了三次真实实验,以表明我们提出的方法的优势。

基站部署优化

  • Access 针对狭长空间环境的 UWB 传感器优化部署
    本文针对窄长地下巷道中对更高定位精度的要求,对超宽带 (UWB) 传感器部署进行了详细研究。推导了到达时间 (TOA) 和到达时间差 (TDOA) 定位模型之间的精度因子 (DOP) 关系,并采用粒子群优化部署 (PSOD) 策略对锚节点 (AN) 排列进行优化,以在保证完全覆盖的前提下实现更优的配置。通过 UWB 定位系统进行了仿真和实验验证。实验结果表明,在两种定位模型中,与等距优化部署 (EOD) 和随机部署传感器 (RDS) 方案相比,PSOD 方案表现出最佳性能,具有最低的 DOP。提出的 PSOD 方案能够实现最佳定位精度,理论平均估计精度为 0.119 m。 PSOD方案在三个轴方向上的定位精度较RSD方案分别提高了39.1%、49.6%、43.2%,这对于在狭长地下空间中布置超宽带天线具有重要的指导意义。

其他融合定位

  • TIM 基于超宽带和激光雷达的通信受限多机器人分布式相对定位
    相对定位对于多机器人系统协作执行探索和编队等任务至关重要。然而,在没有 GPS 和通信受限的环境中,这对于外观相似的同类机器人来说极具挑战性。在本文中,我们提出了一种基于机载超宽带 (UWB) 和光检测和测距 (LiDAR) 传感器的机器人团队完全分布式相对位置估计方法,其中 LiDAR 用于获取视线 (LOS) 内匿名物体的位置,UWB 用于机器人之间的测距。我们构建了两个图,即 UWB 连接图和 LiDAR 连接图,以基于 UWB 和 LiDAR 测量来表示物体(机器人和障碍物)之间的空间关系。识别和相对位置估计被表述为一个常见的子图匹配问题。设计了一种错误匹配的机器人识别方法来识别由于 LiDAR 视野中的障碍物遮挡而导致的错误匹配结果。然后利用匹配良好的机器人和 UWB 连接图中的 UWB 测距测量对这些机器人进行定位。我们进行了实验来评估我们的方法的性能。结果表明,所提出的方法能够以分布式方式仅通过交换有限的信息来实现机器人团队的满意定位精度。
  • IOT Early Access 基于 GNSS/IMU/UWB/MAP 集成的无缝行人定位系统
    行人定位具有广泛的应用。然而,由于环境遮挡和室内外转换等因素,在复杂环境中实现无缝定位仍然是一项重大挑战。本文提出了一种使用全球导航卫星系统 (GNSS)、惯性测量单元 (IMU)、超宽带 (UWB) 和地图数据的组合定位框架来解决此问题。在该框架中,提出了一种三步 GNSS 定位方法,通过消除非视距 (NLOS) 效应和过滤异常来提高准确性和稳定性。惯性导航系统 (INS) 和行人航位推算 (PDR) 模型相结合,以提高局部精度和稳定性。UWB 以其卓越的定位能力而闻名,已被集成到一些智能手机中,并有望用于大规模室内应用。本文提出了一种基于梯度下降的最佳锚部署算法和针对不同锚数量的定位方法。此外,非平稳马尔可夫模型融合地图数据进行轨迹预测和校正。最后,对校正后的轨迹进行异常检测滤波和低通滤波,获得高精度和稳定性。在荣耀 V20 和 iQOO U3 智能手机上进行的实验表明,与基线算法相比,算法有显着的改进。荣耀 V20 的室外均方根误差 (RMSE) 降低了 44.4% (10.83m),iQOO U3 的室外均方根误差 (RMSE) 降低了 40.0% (10.77m)。此外,室外标准差 (STD) 分别提高了 43.9% (4.80m) 和 43.5% (5.50m)。在过渡区域,RMSE 分别提高了 4.61% (10.77m) 和 19.6% (4.76m)。室内 RMSE 也有所改善,荣耀 V20 将其降低了 8.00% (3.79m),iQOO U3 降低了 5.78% (3.91m)。
  • 2024 IEEE International Conference on Control Science and Systems Engineering (ICCSSE) 基于激光雷达/IMU/UWB融合的室内退化环境SLAM方法
    目前,3D激光雷达凭借稳定可靠的测量性能被广泛应用于室内SLAM任务。然而,其在室内退化环境下定位和建图误差较大,难以保证较高的全局一致性,这一问题长期制约着其发展。针对这一挑战,本文提出了一种基于多传感器信息融合的室内移动机器人SLAM算法。该方法绕过单纯依赖退化状态估计的局限性,利用传感器间的特征互补来解决室内退化问题,从而突破单一传感器在现实环境中的局限性。本文融合惯性测量单元(IMU)、超宽带(UWB)测距和激光雷达信息,设计了一套完整的基于非线性优化和误差状态卡尔曼滤波器的SLAM算法框架。同时,将激光雷达感知的点云退化程度作为选择UWB残差权重的重要依据,从而解决了室内激光雷达点云退化问题。最后,本文通过真实环境的实验证明了该算法的优越性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值