描述
回文数是从前往后和从后往前得到的数是相同的。
现给你一个正整数N,请你找到比N大的最小的那个回文数P。
输入
输入包含多组测试数据。
每组输入一个正整数N,N不超过10000位,并且N不包含前导0。
输出
对于每组输入,输出比N大的最小的那个回文数P。
输入样例 1
44
3
175
输出样例 1
55
4
181
题解
首先,题目以及声明N不超过1000位即N<=10^1000,这个正常的数字一定是无法存储的,即使是long long也不可能存这么大的数字,同时既然数字这么大那么如果便利去找到第一个比他大的回文数也是不切实际的,毕竟这个数字实在是太大了循环遍历的话时间复杂度太高了,那么什么数据结构可以存下如此巨大的天文数字同时又不会导致时长超限呢?那必然是string了对于字符串来说1000的长度并不长,同时字符串可以直接修改每一位的数据。这也就意味着没必要进行遍历也可以完成计算。
现在来看规律了:
回文,顾名思义从前往后和从后往前都一样。那么回文的规律就出来了既然都一样那么,我们只需要维护半段,另外半段就是倒着过去的所以,我们只需要取出前半段即可,对于偶数位的回文直接取前半段对于,奇数位的回文则取前半段加上中间那个,然后直接进行回文操作将前半段与后半段组合成回文数,然后与之前的数做对比如果大于它,那毫无疑问他就是最小的比N大的回文数,否则取出的前半段+1然后再取回文,这个数一定是最小的比N大的回文数
代码:
#include <bits/stdc++.h>
using namespace std;
string a;
string mult(string x)
{
x[x.length()-1]++;
for(int i=x.length()-1; i>=0; i--)
{
if(x[i]>'9')
{
if(i==0)
{
x[i]-=10;
x.insert(0,1,'1');
}
else
{
x[i]-=10;
x[i-1]++;
}
}
}
return x;
}
int main()
{
while(cin>>a)
{
if(a.size()==1)
{
if(a[a.length()-1]<'9')
{
a[a.length()-1]++;
cout<<a<<endl;
}
else
{
cout<<"11"<<endl;
}
}
else
{
string b;
int len;
if(a.length()%2==0)
len=a.length()/2;
else
len=a.length()/2+1;
for(int i=0; i<len; i++)
{
b+=a[i];
}
//cout<<b<<endl;
string c=b;
if(a.length()%2==0)
{
for(int i=b.length()-1; i>=0; i--)
c+=c[i];
}
else
{
for(int i=b.length()-2; i>=0; i--)
c+=c[i];
}
if(c>a)
cout<<c<<endl;
else
{
c=mult(b);
if(c.length()==b.length())
{
if(a.length()%2==0)
{
for(int i=b.length()-1; i>=0; i--)
c+=c[i];
}
else
{
for(int i=b.length()-2; i>=0; i--)
c+=c[i];
}
cout<<c<<endl;
}
else{
int lenc=c.length();
// cout<<c<<endl;
if(a.length()%2!=0)
{
for(int i=lenc-3; i>=0; i--)
c+=c[i];
}
else
{
for(int i=lenc-2; i>=0; i--)
c+=c[i];
}
cout<<c<<endl;
}
}
}
}
return 0;
}