数据结构(Python)第一章:绪论
1.1 数据结构简介
数据结构是计算机存储、组织数据的方式。它研究数据的逻辑结构、物理结构以及它们之间的关系,并定义相应的操作。
Python 作为一门高级编程语言,提供了丰富的内置数据结构,例如列表、元组、字典、集合等。同时,Python 也支持用户自定义数据结构,例如栈、队列、链表、树、图等。
数据结构的选择对程序的效率至关重要。不同的数据结构适用于不同的场景,选择合适的数据结构可以大大提高程序的运行效率。
1.2 基本概念
- 数据:数据是信息的载体,是描述客观事物的符号。
- 数据元素:数据元素是数据的基本单位,通常作为一个整体进行考虑和处理。
- 数据项:数据项是构成数据元素的不可分割的最小单位。
- 数据对象:数据对象是性质相同的数据元素的集合,是数据的一个子集。
- 数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
1.3 逻辑结构与物理结构
逻辑结构是指数据元素之间的逻辑关系,与数据的存储无关。常见的逻辑结构有:
- 集合:数据元素之间除了“同属于一个集合”的关系外,别无其他关系。
- 线性结构:数据元素之间存在一对一的关系。
- 树形结构:数据元素之间存在一对多的关系。
- 图形结构:数据元素之间存在多对多的关系。
物理结构是指数据的逻辑结构在计算机中的存储形式。常见的物理结构有:
- 顺序存储结构:用一组地址连续的存储单元依次存储数据元素。
- 链式存储结构:用一组任意的存储单元存储数据元素,数据元素之间的逻辑关系用指针来表示。
1.4 抽象数据类型 (ADT)
抽象数据类型 (ADT) 是指一个数学模型以及定义在该模型上的一组操作。ADT 只关心数据的逻辑结构和操作,而不关心数据的存储结构和具体实现。
Python 中可以使用类来实现 ADT。例如,我们可以定义一个栈的 ADT:
class Stack:
def __init__(self):
self.items = []
def is_empty(self):
return self.items == []
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
return self.items[-1]
def size(self):
return len(self.items)
1.5 算法分析
算法是解决特定问题的步骤描述。算法的效率通常用时间复杂度和空间复杂度来衡量。
- 时间复杂度:算法执行时间的增长率。
- 空间复杂度:算法所需存储空间的增长率。
Python 中可以使用 time
模块来测量算法的执行时间。
import time
start_time = time.time()
# 执行算法
end_time = time.time()
print("执行时间:", end_time - start_time)
1.6 Python 内置数据结构
Python 提供了丰富的内置数据结构,例如:
- 列表 (list):有序的可变序列。
- 元组 (tuple):有序的不可变序列。
- 字典 (dict):无序的键值对集合。
- 集合 (set):无序的不重复元素集合。
1.7 总结
本章介绍了数据结构的基本概念、逻辑结构、物理结构、抽象数据类型、算法分析以及 Python 内置数据结构。数据结构是计算机科学的基础,掌握数据结构对于编写高效的程序至关重要。
注意: 以上内容只是数据结构的第一章内容,后续章节会详细介绍各种数据结构及其应用。