【数据结构】(Python)第一章:绪论

数据结构(Python)第一章:绪论

1.1 数据结构简介

数据结构是计算机存储、组织数据的方式。它研究数据的逻辑结构、物理结构以及它们之间的关系,并定义相应的操作。

Python 作为一门高级编程语言,提供了丰富的内置数据结构,例如列表、元组、字典、集合等。同时,Python 也支持用户自定义数据结构,例如栈、队列、链表、树、图等。

数据结构的选择对程序的效率至关重要。不同的数据结构适用于不同的场景,选择合适的数据结构可以大大提高程序的运行效率。

1.2 基本概念

  • 数据:数据是信息的载体,是描述客观事物的符号。
  • 数据元素:数据元素是数据的基本单位,通常作为一个整体进行考虑和处理。
  • 数据项:数据项是构成数据元素的不可分割的最小单位。
  • 数据对象:数据对象是性质相同的数据元素的集合,是数据的一个子集。
  • 数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

1.3 逻辑结构与物理结构

逻辑结构是指数据元素之间的逻辑关系,与数据的存储无关。常见的逻辑结构有:

  • 集合:数据元素之间除了“同属于一个集合”的关系外,别无其他关系。
  • 线性结构:数据元素之间存在一对一的关系。
  • 树形结构:数据元素之间存在一对多的关系。
  • 图形结构:数据元素之间存在多对多的关系。

物理结构是指数据的逻辑结构在计算机中的存储形式。常见的物理结构有:

  • 顺序存储结构:用一组地址连续的存储单元依次存储数据元素。
  • 链式存储结构:用一组任意的存储单元存储数据元素,数据元素之间的逻辑关系用指针来表示。

1.4 抽象数据类型 (ADT)

抽象数据类型 (ADT) 是指一个数学模型以及定义在该模型上的一组操作。ADT 只关心数据的逻辑结构和操作,而不关心数据的存储结构和具体实现。

Python 中可以使用类来实现 ADT。例如,我们可以定义一个栈的 ADT:

class Stack:
    def __init__(self):
        self.items = []

    def is_empty(self):
        return self.items == []

    def push(self, item):
        self.items.append(item)

    def pop(self):
        return self.items.pop()

    def peek(self):
        return self.items[-1]

    def size(self):
        return len(self.items)

1.5 算法分析

算法是解决特定问题的步骤描述。算法的效率通常用时间复杂度和空间复杂度来衡量。

  • 时间复杂度:算法执行时间的增长率。
  • 空间复杂度:算法所需存储空间的增长率。

Python 中可以使用 time 模块来测量算法的执行时间。

import time

start_time = time.time()
# 执行算法
end_time = time.time()
print("执行时间:", end_time - start_time)

1.6 Python 内置数据结构

Python 提供了丰富的内置数据结构,例如:

  • 列表 (list):有序的可变序列。
  • 元组 (tuple):有序的不可变序列。
  • 字典 (dict):无序的键值对集合。
  • 集合 (set):无序的不重复元素集合。

1.7 总结

本章介绍了数据结构的基本概念、逻辑结构、物理结构、抽象数据类型、算法分析以及 Python 内置数据结构。数据结构是计算机科学的基础,掌握数据结构对于编写高效的程序至关重要。

注意: 以上内容只是数据结构的第一章内容,后续章节会详细介绍各种数据结构及其应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值