常见泰勒展开

e x = ∑ n = 0 ∞ 1 n ! x n = 1 + x + 1 2 ! x 2 + ⋯   , x ∈ ( − ∞ , + ∞ ) e^{x}=\displaystyle\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots, x \in(-\infty,+\infty) ex=n=0n!1xn=1+x+2!1x2+,x(,+)
sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − 1 3 ! x 3 + 1 5 ! x 5 − ⋯   , x ∈ ( − ∞ , + ∞ ) \sin x=\displaystyle\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}-\cdots, x \in(-\infty,+\infty) sinx=n=0(2n+1)!(1)nx2n+1=x3!1x3+5!1x5,x(,+)
cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯   , x ∈ ( − ∞ , + ∞ ) \cos x=\displaystyle\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}-\cdots, x \in(-\infty,+\infty) cosx=n=0(2n)!(1)nx2n=12!1x2+4!1x4,x(,+)
ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + 1 3 x 3 − ⋯   , x ∈ ( − 1 , 1 ] \ln (1+x)=\displaystyle\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots, x \in(-1,1] ln(1+x)=n=0n+1(1)nxn+1=x21x2+31x3,x(1,1]
1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ⋯   , x ∈ ( − 1 , 1 ) \dfrac{1}{1-x}=\displaystyle\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) 1x1=n=0xn=1+x+x2+x3+,x(1,1)
1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯   , x ∈ ( − 1 , 1 ) \dfrac{1}{1+x}=\displaystyle\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1) 1+x1=n=0(1)nxn=1x+x2x3+,x(1,1)
( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯   , x ∈ ( − 1 , 1 ) (1+x)^{\alpha}=1+\displaystyle\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) (1+x)α=1+n=1n!α(α1)(αn+1)xn=1+αx+2!α(α1)x2+,x(1,1)
arctan ⁡ x = ∑ x = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = x − 1 3 x 3 + 1 5 x 5 + ⋯   , x ∈ [ − 1 , 1 ] \arctan x=\displaystyle\sum_{x=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots, x \in[-1,1] arctanx=x=02n+1(1)nx2n+1=x31x3+51x5+,x[1,1]
arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = x + 1 6 x 3 + 3 40 x 3 + 5 112 x 7 + ⋯   , x ∈ ( − 1 , 1 ) \arcsin x=\displaystyle\sum_{n=0}^{\infty} \frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)} x^{2n+1}=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{3}+\frac{5}{112} x^{7}+\cdots, x \in(-1,1) arcsinx=n=04n(n!)2(2n+1)(2n)!x2n+1=x+61x3+403x3+1125x7+,x(1,1)
tan ⁡ x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + ⋯ x ∈ ( − 1 , 1 ) \tan x=\displaystyle\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\cdots x \in(-1,1) tanx=n=1(2n)!B2n(4)n(14n)x2n1=x+31x3+152x5+31517x7+x(1,1)
sec ⁡ x = ∑ n = 0 ∞ ( − 1 ) n E 2 n x 2 n ( 2 n ) ! = 1 + 1 2 x 2 + 5 24 x 4 + 61 720 x 6 + ⋯   , x ∈ ( − π 2 , π 2 ) \sec x=\displaystyle\sum_{n=0}^{\infty} \frac{(-1)^{n} E_{2 n} x^{2 n}}{(2 n) !}=1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\frac{61}{720} x^{6}+\cdots, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) secx=n=0(2n)!(1)nE2nx2n=1+21x2+245x4+72061x6+,x(2π,2π)
csc ⁡ x = ∑ n = 0 ∞ ( − 1 ) n + 1 2 ( 2 2 n − 1 − 1 ) B 2 n ( 2 n ) ! x 2 n − 1 = 1 x + 1 6 x + 7 360 x 3 + 31 15120 x 5 + ⋯   , x ∈ ( 0 , π ) \csc x=\displaystyle\sum_{n=0}^{\infty} \frac{(-1)^{n+1}2(2^{2 n-1}-1)B_{2 n}}{(2n)!} x^{2 n-1}=\frac{1}{x}+\frac{1}{6} x+\frac{7}{360} x^{3}+\frac{31}{15120} x^{5}+\cdots, x \in(0, \pi) cscx=n=0(2n)!(1)n+12(22n11)B2nx2n1=x1+61x+3607x3+1512031x5+,x(0,π)
cot ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 2 n B 2 n ( 2 n ) ! x 2 n − 1 = 1 x − 1 3 x − 1 45 x 3 − 2 945 x 5 − ⋯   , x ∈ ( 0 , π ) \cot x=\displaystyle\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} B_{2n}}{(2 n) !} x^{2 n-1}=\frac{1}{x}-\frac{1}{3} x-\frac{1}{45} x^{3}-\frac{2}{945} x^{5}-\cdots, x \in(0, \pi) cotx=n=0(2n)!(1)n22nB2nx2n1=x131x451x39452x5,x(0,π)
sh ⁡ x = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯   , x ∈ ( − ∞ , + ∞ ) \operatorname{sh} x=\displaystyle\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) !}=x+\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\frac{x^{7}}{7 !}+\cdots, x \in(-\infty,+\infty) shx=n=0(2n+1)!x2n+1=x+3!x3+5!x5+7!x7+,x(,+)
ch ⁡ x = ∑ n = 0 ∞ x 2 n ( 2 n ) ! = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯   , x ∈ ( − ∞ , + ∞ ) \operatorname{ch } x=\displaystyle\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n) !}=1+\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}+\frac{x^{6}}{6 !}+\cdots, x \in(-\infty,+\infty) chx=n=0(2n)!x2n=1+2!x2+4!x4+6!x6+,x(,+)
th ⁡ x = ∑ n = 1 ∞ 2 2 n ( 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! = x − 1 3 x 3 + 2 15 x 5 − 17 315 x 7 + ⋯   , ∣ x ∣ < π 2 \operatorname{ th } x=\displaystyle\sum_{n=1}^{\infty} \frac{2^{2n}\left(2^{2 n}-1\right) B_{2 n}x^{2 n-1}}{(2 n) !}=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\cdots,|x|<\frac{\pi}{2} thx=n=1(2n)!22n(22n1)B2nx2n1=x31x3+152x531517x7+,x<2π
arsh ⁡ x = ∑ n = 0 ∞ ( ( − 1 ) n ( 2 n ) ! 2 2 n ( n ! ) 2 ) x 2 n + 1 ( 2 n + 1 ) = x − 1 6 x 3 + 3 40 x 5 − 5 112 x 7 + 35 1152 x 9 − ⋯   , ∣ x ∣ < 1 \operatorname{ arsh } x=\displaystyle\sum_{n=0}^{\infty}\left(\frac{(-1)^{n}(2 n) !}{2^{2 n}(n !)^{2}}\right) \frac{x^{2n+1}}{(2 n+1)}=x-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}-\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}-\cdots,|x|<1 arshx=n=0(22n(n!)2(1)n(2n)!)(2n+1)x2n+1=x61x3+403x51125x7+115235x9,x<1
arch ⁡ x = ln ⁡ 2 x − ∑ n = 1 ∞ ( ( − 1 ) n ( 2 n ) ! 2 2 n ( n ! ) 2 ) x − 2 n 2 n = ln ⁡ 2 x − ( 1 4 x − 2 + 3 32 x − 4 + 15 288 x − 6 + ⋯   ) , ∣ x ∣ > 1 \operatorname{ arch } x=\ln 2 x-\displaystyle\sum_{n=1}^{\infty}\left(\frac{(-1)^{n}(2 n) !}{2^{2 n}(n !)^{2}}\right) \frac{x^{-2 n}}{2 n}=\ln 2 x-\left(\frac{1}{4} x^{-2}+\frac{3}{32} x^{-4}+\frac{15}{288} x^{-6}+\cdots\right),|x|>1 archx=ln2xn=1(22n(n!)2(1)n(2n)!)2nx2n=ln2x(41x2+323x4+28815x6+),x>1
arth ⁡ x = ∑ n = 0 ∞ x 2 n + 1 2 n + 1 = x + x 3 3 + x 5 5 + x 7 7 + ⋯   , ∣ x ∣ < 1 \operatorname{ arth } x=\displaystyle\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\cdots,|x|<1 arthx=n=02n+1x2n+1=x+3x3+5x5+7x7+,x<1

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值