题意
给你n个椅子有小于
n
2
\frac{n}{2}
2n的椅子上坐的有人,一个人从一个椅子i到另一个椅子j的能量时abs(i-j),问用最少多少能量才能使所有的人都坐到一个从来没有被坐过的椅子上面。
思路
我们看一下这个数据范围是n<=5000就能想到肯定是一个dp,现在我们要做的就是来定义这个dp,而且求出转移方程式。
这一题的关键就是看每一个人最好坐在那一个椅子上,最终可以使需要的能量最少。
我们就相当于求每一个人坐在那个椅子上是最优的。
这种问题我们一般都定义dp[i][j]为前i个人,坐在前j个椅子上的最小能量,每次就是看多一个人以后,应该怎么来选椅子。
每次选椅子肯定是两种选择,要么就是i不选椅子j,要么就是选椅子j,不选椅子j的话就是
dp[i][j]=dp[i][j-1].
如果选椅子j的话就是.
dp[i][j]=dp[i-1][j-1]+人i和椅子j的距离(可以维护出来)。
这样就可以把题写出来了。
代码
#include<iostream>
using namespace std;
const int N=5010;
int dp[N][N];
int ps1[N],ps0[N];
int main()
{
int n;
cin>>n;
int cnt1=0,cnt0=0;
for(int i=1 ; i<=n ; i++)
{
int x;
cin>>x;
if(x==1) ps1[++cnt1]=i;
else ps0[++cnt0]=i;
}
for(int i=1 ; i<=cnt1 ; i++)
{
for(int j=i ; j<=cnt0 ; j++)
{
if(i==j) dp[i][j]=dp[i-1][j-1]+abs(ps1[i]-ps0[j]);
else dp[i][j]=min(dp[i-1][j-1]+abs(ps1[i]-ps0[j]),dp[i][j-1]);
}
}
cout<<dp[cnt1][cnt0]<<endl;
return 0;
}