【Redis】基于Redis实现查询缓存

1.缓存更新策略

 主动更新用的最多。
在这里插入图片描述
 主动更新一般是由缓存的调用者,在更新数据库的同时,更新缓存。

操作缓存和数据库时有三个问题需要考虑:

  • 删除缓存还是更新缓存?
    更新缓存:每次更新数据库都更新缓存,无效写操作较多
    删除缓存:更新数据库时让缓存失效,查询时再更新缓存
  • 如何保证缓存与数据库的操作的同时成功或失败?
    单体系统,将缓存与数据库操作放在一个事务
    分布式系统,利用TCC等分布式事务方案
  • 先操作缓存还是先操作数据库?
    先操作数据库,再删除缓存
    先删除缓存,再操作数据库

2.缓存穿透

缓存穿透产生的原因是什么?
 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

  • 缓存null值
  • 布隆过滤
  • 增强id的复杂度,避免被猜测id规律
  • 做好数据的基础格式校验
  • 加强用户权限校验
  • 做好热点参数的限流

如下图所示,这里基于缓存空对象实现:
在这里插入图片描述

  • 缓存穿透代码
    // 封装了缓存穿透的处理
    /*
    参数里面需要传递查询数据库的函数
     */
    public <R, ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Long time, TimeUnit unit,
                                          Function<ID, R> dbFallback) {
        // 1.从Redis查询商铺缓存
        String key = keyPrefix + id;
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(json)) {
            // 3.存在则返回缓存数据
            return JSONUtil.toBean(json, type);
        }

        // 命中是否为空的缓存
        if(json != null){
            return null;
        }

        // 4.不存在则查询数据库
        R r = dbFallback.apply(id);
        // 5. 数据库不存在
        if (r == null) {
            // 将空值保存在redis中,应对缓存穿透
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            return null;
        }
        // 6. 数据库存在,写入缓存
        this.set(key, r, time, unit);
        return r;
    }
  • 数据写入缓存代码
    public void set(String key, Object value, Long time, TimeUnit unit) {
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
    }

3. 缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:

  • 给不同的Key的TTL添加随机值
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

4.缓存击穿

 缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
 常见的解决方案有两种:

  • 互斥锁
  • 逻辑过期
    在这里插入图片描述

互斥锁

在这里插入图片描述

    // 互斥锁解决缓存击穿
    public <R,ID> R queryWithMutex(String keyPrefix, ID id, Class<R> type, Long time, TimeUnit unit, Function<ID, R> dbFallback) {
        // 1.从Redis查询商铺缓存
        String key = keyPrefix + id;
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(json)) {
            // 3.存在则返回缓存数据

            return JSONUtil.toBean(json, type);
        }

        // 命中是否为空的缓存
        if(json != null){
            return null;
        }

        // 4. 实现缓存重建
        // 4.1 尝试获取分布式锁
        String lockKey = "lock:shop:" + id;
        R r = null;
        try {
            boolean isLock = tryLock(lockKey);

            // 4.2 判断是否获取成功
            if (!isLock) {
                // 4.3 失败,则失眠并重试
                Thread.sleep(50);
                return queryWithMutex(keyPrefix, id, type, time, unit, dbFallback);
            }


            // 4.4 成功则查询数据库

            r = dbFallback.apply(id);
            // 5. 数据库不存在
            if (r == null) {
                // 将空值保存在redis中,应对缓存穿透
                this.set(key, "", time, unit);
                return null;
            }
            // 6. 数据库存在,写入缓存
            this.set(key, r, time, unit);

        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            // 7. 释放锁
            releaseLock(lockKey);
        }

        return r;
    }
  • 锁相关代码
   // 线程池
    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

    // 尝试获取分布式锁
    private boolean tryLock(String key) {
        Boolean lock = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        // 这样更安全
        return BooleanUtil.isTrue(lock);
    }

    // 释放分布式锁
    private void releaseLock(String key) {
        stringRedisTemplate.delete(key);
    }

逻辑过期

在这里插入图片描述

  • 逻辑过期存入数据
    public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
        RedisData redisData = new RedisData();
        redisData.setData(value);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));

        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
    }
  • 逻辑过期锁查询数据
    public <R,ID> R queryWithLogicalExpire(String keyPrefix ,ID id, Class<R> type, Long time, TimeUnit unit, Function<ID, R> dbFallback) {
        // 1.从Redis查询商铺缓存
        String key = keyPrefix + id;
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isBlank(json)) {
            // 3.不存在
            return null;
        }
        // 4. 命中,json反序列化对象
        RedisData redisData = JSONUtil.toBean(json, RedisData.class);
        JSONObject data = (JSONObject) redisData.getData();
        R r = JSONUtil.toBean(data, type);
        LocalDateTime expireTime = redisData.getExpireTime();
        // 5. 判断是否过期
        if (expireTime.isAfter(LocalDateTime.now())) {
            // 5.1 未过期直接返回
            return r;
        }
        // 5.2 过期则异步更新缓存

        // 6. 缓存重建
        // 6.1 尝试获取分布式锁
        String lockKey = LOCK_SHOP_KEY + id;
        // 6.2 判断是否获取成功
        if (tryLock(lockKey)) {
            // 6.3 成功,开启独立线程实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(()->{
                // 重建缓存
                try {
                    // 查数据库
                    R r1 = dbFallback.apply(id);
                    // 保存在redis中
                    this.setWithLogicalExpire(key, r1, time, unit);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    releaseLock(lockKey);
                }

            });
        }
        // 6.4 返回过期的信息
        return r;
    }
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CRE_MO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值