他是怎么求解第 n 个素数的,筛法嘛

题目:给出一个正整数 n ,求解第 n 个素数(即质数);


定义(暴力)法

我们判断一个数 n 是不是素数的时候,可以直接通过素数的定义来求,即只能被 1 和 n (自身)整除,否则这个数就不是素数。
代码如下:

public int violence(int n) {
        int num = 0, result = 0;
        for (int i = 2; ; i++) {
            boolean flag = true;
            for (int j = 2; j * j <= i; j++) {
                if (i % j == 0) {
                    flag = false;
                    break;
                }
                result = i;
            }
            if (flag) {
                num++;
            }
            if (n == num) {
                break;
            }
        }
        return result;
    }

时间复杂度O(n2)

思路:用一个变量 num 记录找到的素数的个数,每找到一个便自增 1 ,只有当它等于我们我们要找到 n 为止,此时返回的结果 result 便是题目需要的第 n 个素数。


筛法的引出

但是我们仔细分析便会发现,如果要求的素数的个数过多的时候,这个方法就不太合适了。原因无他:太慢了!!!都是泪(╥╯^╰╥) 。

因此,我们需要一种更高效的方法来求素数,当当当!筛法来了!筛法是一种求质数的方法,就像筛子一样,将我们需要的质数筛选出来;也可以说是,将求质数时大量无效重复的计算筛选出去。这能极大提升算法性能,甚至达到线性水准。这里将介绍两种筛法。


埃拉托斯特尼筛法(埃氏筛法)

基本思路素数的倍数一定不是素数
实现方法:首先初始化一个boolean类型的大数组 flags , 用于标记每个数是否为合数(不是素数的数),如果是,则为 false,反之为true
先假设所有的数都是素数( boolean 数组初始化,所有元素都为 false ),从第一个素数 2 开始,把 2 的倍数都标记为合数(置为 true ),一直到大于某个足够大的值 ;然后进行下一趟找到 2 后面的下一个素数3,进行同样的处理,直到最后,数组中依然为 false 的数即为素数
此时再从筛选后的数组中查找我们所需要的素数,就快很多了。
话不多说,代码奉上。

public int eratosthenes(int x) {
        int n = 100000000;
        int result = 0;
        boolean[] flags = new boolean[n];
        for (int i = 2; i < n / 2; i++) {
            if (flags[i]) {
                // 合数没有资格参加筛法
                continue;
            }
            for (int k = 2; k <= n / i; k++) {
                if (i * k < n) {
                    flags[i * k] = true;
                }
            }
        }
        int m = 0;
        for (int i = 2; i < n; i++) {
            if (!flags[i]) {
                m++;
                if (m == x) {
                    result = i;
                }
            }
        }
        return result;
    }

时间复杂度O(nlog(n))


欧拉筛

埃氏筛看起来挺不错,去除了很多无效的计算,但是O(nlog(n)) 的时间复杂度遇见超大计算量的情况,性能还是堪忧,那么我们还能优化吗?答案是肯定的。
欧拉筛又称为线性筛,很好理解,就是时间复杂度达到了 O(n) 的水平。那么它是怎么优化的呢?
回顾上面的埃氏筛,我们不难发现,其实还存在一些重复性计算,比如判断 2 的时候将(2 * 3)6筛了一遍,在判断 3 的时候又将(3 * 2)6 筛了一遍。
为了去掉这部分冗余计算,神奇的欧拉筛出现了。
下面是欧拉筛的实现过程。

public int euler(int n) {
        int max = 100000000, k = 0;
        int[] list = new int[n];
        boolean[] booleans = new boolean[max];
        for (int i = 2; ; i++) {
            if (k == n) {
                break;
            }
            if (!booleans[i]) {
                list[k++] = i;
            }
            for (int j = 0; j < k; j++) {
                if (list[j] * i > max) {
                    break;
                }
                booleans[list[j] * i] = true;
                if (i % list[j] == 0) {
                    break;
                }
            }
        }
        return list[k - 1];
    }

基本思想 :在埃氏筛法的基础上,让每个合数只被它的最小质因子筛选一次,以达到不重复的目的。
相比埃氏筛,欧拉筛多用了一个数组 list 存放所有筛选出来的质数,并进行相关判断,确保所有的合数都是被它的最小质因数所筛去,以此保证每个数只被筛选了一次,要么是素数,要么是合数。


给大家运行两个筛法的运行时间比较(IDEA跑的)
这里计算的是第 70W 个素数O(∩_∩)O
计算的是第 70W 个素数O(∩_∩)O

在这里插入图片描述
我们可以明显感到欧拉线性筛的强大之处,算法的魅力莫过于此,当然也让人头秃到(**),哈哈哈!

结语

领域万变,但精神唯一!

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

隔壁老康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值