以对数复杂度求解斐波那契数(SICP 练习1.19详细分析--矩阵幂乘求斐波那契数列的变种)

SICP中的这道例题其实是矩阵快速幂求斐波那契数列的变种,所以我们先来简单的讲一下矩阵幂乘求斐波那契数列。

一、矩阵快速幂求斐波那契数列

大家都知道,斐波那契数列的通项公式是: F(n+1)=F(n)+F(n-1),
令a=F(n+1),b=F(n),通过
a=a+bb=a
这两个公式进行迭代,可以得到线性复杂度的斐波那契数列求解算法。

//C代码表示
#include<stdio.h>

//F(0)=0,F(1)=1
int Fibonacci(int a, int b, int count) {
	if (count == 0)
		return b;
	else
		return Fibonacci(a + b, a, count - 1);
}

int main(void) {
	printf("%d\n", Fibonacci(1, 0, 5));
}

而这种形式【F(n+1)=F(n)+F(n-1),F(n)=F(n) 】的加法恰好可以用矩阵乘积来表示:
在这里插入图片描述
通过对公式(1)进行递推,我们可以得到:
在这里插入图片描述
合并(2)、(3)两式后,我们就可以得到公式(4),该式即为斐波那契额数列的矩阵表示

在这里插入图片描述

有了公式(4)后,我们便可以将求斐波那契额数列这个问题,转换为求矩阵的幂。但是如果求矩阵的n次幂时只是单纯的连续n个矩阵相乘,所得的算法,其时间复杂度仍然是O(n)。

不过我们可以通过在这里插入图片描述
这个技巧来解决上述问题,下面是C伪码表示(没有实现矩阵相乘)

void  Fibonacci(int M[2][2],int count){
	if (count == 1)
		return;
	
	Fibonacci(M, count / 2);
	M = M * M;
	
	if(count%2==1)
		M=M*{ {1,1},{1,0} };

}

int fib(int count) {
	int M[2][2] = { {1,1},
					{1,0} };
	Fibonacci(M, count - 1);

	return M[0][0];
}

int main(void){
	printf("%d\n",fib(5));
}

二、SICP练习1.19

通过分析
在这里插入图片描述
我们发现
在这里插入图片描述
在这里插入图片描述
每当n为偶数时,应用这种变换,我们最终那个可以得到对数复杂度的解

(define (fib n)
  (fib-iter 1 0 0 1 n))

(define (fib-iter a b p q count)
  (cond ((= count 0) b)
        ((even? count)
         (fib-iter a
                   b
                   (+ (* p p) (* q q))
                   (+ (* 2 p q) (* q q))
                   (/ count 2)))
         (else (fib-iter (+ (* (+ p q) a) (* b q))
                         (+ (* b p) (* a q))
                         p
                         q
                         (- count 1)))))

哎,写的不好,多多见谅

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值