ACM周训练总结(八)
本周继续学习了背包问题并学习了二分法。
一、多重背包问题
其题目特征为:
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大 。
基本思路:
对于第 i 种物品有 num[i]+1种策略:取 0 件,取 1 件……取 num[i] 件,令 f[i][v] 表示前 i 种物品恰放入一个容量为 V 的背包的最大权值。(和完全背包问题很类似,基本的方程只需将完全背包问题的方程略微一改即可。)
其与完全背包的区别在于,完全背包中的物品是不限量的,而多重背包的第 i 种物品最多取 num[i] 个
则有状态转移方程:f[i][v]=max{ f[i-1][v-kw[i]]+kc[i] }
二、分组背包
其题目特征为:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路:
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。
设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有:
f[k][v]=max{f[k-1][v],f[k-1][v-w[i]]+c[i] | 物品i属于第k组}
三、二分查找算法
定义:在一个单调有序的集合中查找元素,每次将集合分为左右两部分,判断解在哪个部分中并调整集合上下界,重复直到找到目标元素。
查找函数:
double low=“区间下界”,high=“区间上界”,mid;
while(high - low > 1.0e-6)
{
mid = (high + low)/2;
if(Caculate(mid)<x) //x:待查找的值,Caculate():所要查找的函数,在这里单调递增
low=mid;
else
high=mid;
}
//需保证查找的值在区间范围内
——————————————————————————————
以上即为本周上课所学知识,除此之外,本周还打了两场codeforce的比赛,目前每次比赛只出了一题,很烂,还需继续加油!