1713. 得到子序列的最少操作次数(最长上升子序列问题)

1713. 得到子序列的最少操作次数

难度困难103收藏分享切换为英文接收动态反馈

给你一个数组 target ,包含若干 互不相同 的整数,以及另一个整数数组 arrarr 可能 包含重复元素。

每一次操作中,你可以在 arr 的任意位置插入任一整数。比方说,如果 arr = [1,4,1,2] ,那么你可以在中间添加 3 得到 [1,4,**3**,1,2] 。你可以在数组最开始或最后面添加整数。

请你返回 最少 操作次数,使得 target 成为 arr 的一个子序列。

一个数组的 子序列 指的是删除原数组的某些元素(可能一个元素都不删除),同时不改变其余元素的相对顺序得到的数组。比方说,[2,7,4][4,**2**,3,**7**,2,1,**4**] 的子序列(加粗元素),但 [2,4,2] 不是子序列。

示例 1:

输入:target = [5,1,3], arr = [9,4,2,3,4]
输出:2
解释:你可以添加 5 和 1 ,使得 arr 变为 [5,9,4,1,2,3,4] ,target 为 arr 的子序列。

示例 2:

输入:target = [6,4,8,1,3,2], arr = [4,7,6,2,3,8,6,1]
输出:3

提示:

  • 1 <= target.length, arr.length <= 105
  • 1 <= target[i], arr[i] <= 109
  • target 不包含任何重复元素。

题解

这道题目求的是最长公共子序列,假设target和arr数组的最长公共子序列为m,那么答案就是target.length - m

但是target数组不包含重复元素,所以可以把他转换为最长上升子序列

之前求最长上升子序列的时候比较的是数组的值,比如数组[0,1,0,3,2,3]求得的一个最长上升子序列为[0,1,2,3],这个结果得出的依据就是根据数组内部值的大小来判断的,因为0就是比1小,1就是比2小,2比3小。

在这里就可以根据这个来换个思路,求target = [5,1,3], arr = [9,4,2,3,4]的最长公共子序列,其实就是在求arr = [9,4,2,3,4]的最大上升子序列,只不过得出结果的依据就不是根据数字的大小而是根据这个数在target数组里面的下标大小,这样子就能同时兼顾到两个数组。

为了方便得出每一个数在target数组的下标,所以一开始就预处理一下,将下标存到map里面

求最大上升子序列有两种方法,第一种是普通的动态规划,需要O(n^2)的时间复杂度,显然会超时

class Solution {
    public int minOperations(int[] target, int[] arr) {
        HashMap<Integer,Integer> map = new HashMap<>();
        for (int i = 0; i < target.length; i++) {
            map.put(target[i],i);
        }
        //对arr求最长上升子序列
        int[] dp = new int[arr.length];
        int max = 0;
        for (int i = 0; i < arr.length; i++) {
            dp[i] = 1;
            if(!map.containsKey(arr[i])){
                continue;
            }
            for (int j = i - 1; j >= 0; j--) {
                if(map.containsKey(arr[j]) && map.get(arr[i]) > map.get(arr[j])){
                    dp[i] = Math.max(dp[i],dp[j] + 1);
                }
            }
            max = Math.max(max,dp[i]);
        }
        return target.length - max;
    }
}

第二种方法是维护一个贪心数组,再使用二分查找,这个成功AC:

class Solution {
    public int minOperations(int[] target, int[] arr) {
        HashMap<Integer,Integer> map = new HashMap<>();
        for (int i = 0; i < target.length; i++) {
            map.put(target[i],i);
        }
        //对arr求最大上升子序列
        int[] dp = new int[arr.length + 1]; //dp[i]代表长度为i的最大递增子序列的最后一个数字,dp数组是递增的
        int size = 0;
        for (int i = 0; i < arr.length; i++) {
            if(!map.containsKey(arr[i])){
                continue;
            }
            if(size == 0 || map.get(dp[size]) < map.get(arr[i])){
                dp[++size] = arr[i];
            }else{
                //二分查找
                int l = 1;int r = size;int mid;
                while(l < r){
                    mid = (r - l) / 2 + l;
                    if(map.get(dp[mid]) >= map.get(arr[i])){
                        r = mid;
                    }else{
                        l = mid + 1;
                    }
                }
                dp[l] = arr[i];
            }
        }
        return target.length - size;
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,我可以为你编写动态规划算法求解矩阵连乘和最长公共子序列问题。 首先,我们来看矩阵连乘问题。假设有 $n$ 个矩阵 $A_1, A_2, \dots, A_n$,其维度分别为 $p_0 \times p_1, p_1 \times p_2, \dots, p_{n-1} \times p_n$。我们的目标是通过最少的乘法次数,将这 $n$ 个矩阵相乘得到最终的结果。根据动态规划的思想,我们可以定义一个 $n \times n$ 的二维数组 $m$,其中 $m[i][j]$ 表示从矩阵 $A_i$ 到 $A_j$ 的连乘所需的最少乘法次数。具体的动态规划算法如下: ```python def matrix_chain_order(p): n = len(p) - 1 # 矩阵个数 m = [[0] * n for _ in range(n)] s = [[0] * n for _ in range(n)] for l in range(2, n + 1): for i in range(n - l + 1): j = i + l - 1 m[i][j] = float('inf') for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i]*p[k+1]*p[j+1] if q < m[i][j]: m[i][j] = q s[i][j] = k return m, s ``` 其中,$p$ 是一个长度为 $n+1$ 的数组,表示 $n$ 个矩阵的维度,即 $A_i$ 的维度为 $p_i \times p_{i+1}$。算法返回的 $m$ 数组即为最终的最少乘法次数,$s$ 数组用于记录最优的括号方式。具体来说,$s[i][j]$ 记录的是将 $A_i$ 到 $A_j$ 这段矩阵序列拆分为两部分的位置 $k$,使得 $A_i$ 到 $A_k$ 和 $A_{k+1}$ 到 $A_j$ 分别相乘所需的最少乘法次数之和最小。 接下来,我们来看最长公共子序列问题。假设有两个序列 $X$ 和 $Y$,长度分别为 $m$ 和 $n$。我们的目标是找到它们的最长公共子序列,即一个新的序列 $Z$,满足 $Z$ 是 $X$ 和 $Y$ 的子序列,且 $Z$ 的长度最长。根据动态规划的思想,我们可以定义一个 $m \times n$ 的二维数组 $c$,其中 $c[i][j]$ 表示 $X$ 的前 $i$ 个元素和 $Y$ 的前 $j$ 个元素的最长公共子序列的长度。具体的动态规划算法如下: ```python def lcs_length(X, Y): m, n = len(X), len(Y) c = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if X[i - 1] == Y[j - 1]: c[i][j] = c[i - 1][j - 1] + 1 else: c[i][j] = max(c[i - 1][j], c[i][j - 1]) return c ``` 其中,$X$ 和 $Y$ 分别表示两个序列,算法返回的 $c$ 数组即为最终的最长公共子序列长度。如果需要求出最长公共子序列本身,可以在算法中添加一个记录路径的数组 $b$,具体实现可以参考[这篇文章](https://www.cnblogs.com/-Ackerman/p/11390225.html)。 以上就是动态规划求解矩阵连乘和最长公共子序列问题的算法实现。希望能够对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值