- 博客(8)
- 收藏
- 关注
原创 使用ONNX Runtime在C++中部署YOLOv5模型
介绍如何在C++环境中使用ONNX Runtime部署YOLOv5模型实现目标检测。由于笔记本电脑配置问题,没有实现cuda加速。下图是图片检测结果,代码内容是视频检测。YOLOv5是Ultralytics公司开发的单阶段目标检测器,相比前代有更优的速度-精度平衡。ONNX Runtime是一个高性能推理引擎,支持多种硬件平台,提供统一的API接口。1. YOLOv5模型。
2025-06-06 23:22:16
186
原创 基于卷积神经网络的年龄与性别预测
一个基于卷积神经网络的年龄与性别检测系统,能够处理实时视频流(摄像头或视频文件),检测画面中的人脸,并预测每张人脸的性别(Male/Female)和年龄,最终在检测到的人脸周围绘制矩形框并标注预测结果。
2025-05-30 09:14:34
197
原创 基于卷积神经网络的人脸关键点检测
一个基于卷积神经网络CNN的视频人脸关键点检测模型,使用了PyTorch和OpenCV库,能够检测视频中的人脸,定位5个面部关键点(眼角、鼻尖、嘴角),实时显示检测结果。
2025-05-29 16:36:05
947
原创 基于多遥感特征融合的滑坡智能检测方法
一种基于多遥感特征融合的深度学习框架,用于地质灾害——滑坡的自动化检测。通过整合光学遥感波段、植被指数、地形特征及热红外数据,构建了11通道的多维特征输入,并结合U-Net分割模型进行训练。实验表明,该方法能有效提取滑坡敏感区域,为地质灾害预警提供了可靠的技术支持。
2025-05-29 10:46:56
672
原创 迁移学习——基于残差网络ResNet18的表面缺陷检测
定义了6种表面缺陷类型的标签缩写,对应注释中给出的完整名称。(1)迁移学习:使用预训练的ResNet18模型((2)模型修改:获取原始全连接层的输入特征数(num_ftrs),替换最后一层全连接层,输出6个节点(对应6种表面缺陷类型)(3)前向传播:使用修改后的ResNet进行前向计算return out。
2025-05-26 11:17:00
390
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人