素数和反素数学习笔记

素数定义:

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。

素数计数函数:小于或等于 x x x 的素数的个数,用 π ( x ) \pi(x) π(x) 表示。随着 x x x 的增大,有这样的近似结果: π ( x ) ∼ x ln ⁡ ( x ) \pi(x) \sim \frac{x}{\ln(x)} π(x)ln(x)x

素数判定:

暴力做法

自然可以枚举从小到大的每个数看是否能整除

bool isPrime(a) {
  if (a < 2) return 0;
  for (int i = 2; i * i <= a; ++i)
    if (a % i == 0) return 0;
  return 1;
}

这样做是十分稳妥了,但是真的有必要每个数都去判断吗?
很容易发现这样一个事实:如果 x x x a a a 的约数,那么 a x \frac{a}{x} xa 也是 a a a 的约数。
这个结论告诉我们,对于每一对 ( x , a x ) (x, \frac{a}{x} ) (x,xa),只需要检验其中的一个就好了。为了方便起见,我们之考察每一对里面小的那个数。不难发现,所有这些较小数就是 [ 1 , a ] [1, \sqrt{a}] [1,a ] 这个区间里的数。
由于 1 1 1 肯定是约数,所以不检验它。

Miller-Rabin 素性测试

二次探测定理

如果 p p p 是奇素数,则 x 2 ≡ 1 ( m o d p ) x^2 \equiv 1 \pmod p x21(modp) 的解为 x ≡ 1 ( m o d p ) x \equiv 1 \pmod p x1(modp) 或者 x ≡ p − 1 ( m o d p ) x \equiv p - 1 \pmod p xp1(modp)

要证明该定理,只需将上面的方程移项,再使用平方差公式,得到 ( x + 1 ) ( x − 1 ) ≡ 0   m o d   p (x+1)(x-1) \equiv 0 \bmod p (x+1)(x1)0modp,即可得出上面的结论。

实现

根据卡迈克尔数的性质,可知其一定不是 p e p^e pe

不妨将费马小定理和二次探测定理结合起来使用:

a n − 1 ≡ 1 ( m o d n ) a^{n-1} \equiv 1 \pmod n an11(modn) 中的指数 n − 1 n−1 n1 分解为 n − 1 = u × 2 t n−1=u \times 2^t n1=u×2t,在每轮测试中对随机出来的 a a a 先求出 a u ( m o d n ) a^{u} \pmod n au(modn),之后对这个值执行最多 t t t 次平方操作,若发现非平凡平方根时即可判断出其不是素数,否则通过此轮测试。

bool millerRabin(int n) {
  if (n < 3 || n % 2 == 0) return n == 2;
  int a = n - 1, b = 0;
  while (a % 2 == 0) a /= 2, ++b;
  // test_time 为测试次数,建议设为不小于 8
  // 的整数以保证正确率,但也不宜过大,否则会影响效率
  for (int i = 1, j; i <= test_time; ++i) {
    int x = rand() % (n - 2) + 2, v = quickPow(x, a, n);
    if (v == 1) continue;
    for (j = 0; j < b; ++j) {
      if (v == n - 1) break;
      v = (long long)v * v % n;
    }
    if (j >= b) return 0;
  }
  return 1;
}

反素数定义:

如果某个正整数 n n n 满足如下条件,则称为是反素数:
任何小于 n n n 的正数的约数个数都小于 n n n 的约数个数
其实顾名思义,素数就是因子只有两个的数,那么反素数,就是因子最多的数(并且因子个数相同的时候值最小),所以反素数是相对于一个集合来说的。即在一个集合中,因素最多并且值最小的数,就是反素数。

那么,如何来求解反素数呢?
首先,既然要求因子数,我首先想到的就是素因子分解。把 n n n 分解成 n = p 1 k 1 p 2 k 2 ⋯ p n k n n=p_{1}^{k_{1}}p_{2}^{k_{2}} \cdots p_{n}^{k_{n}} n=p1k1p2k2pnkn 的形式,其中 p p p 是素数, k k k 为他的指数。这样的话总因子个数就是 ( k 1 + 1 ) × ( k 2 + 1 ) × ( k 3 + 1 ) ⋯ × ( k n + 1 ) (k_1+1) \times (k_2+1) \times (k_3+1) \cdots \times (k_n+1) (k1+1)×(k2+1)×(k3+1)×(kn+1)

但是显然质因子分解的复杂度是很高的,并且前一个数的结果不能被后面利用。所以要换个方法。

我们来观察一下反素数的特点。

  1. 反素数肯定是从 2 2 2 开始的连续素数的幂次形式的乘积。

  2. 数值小的素数的幂次大于等于数值大的素数,即 n = p 1 k 1 p 2 k 2 ⋯ p n k n n=p_{1}^{k_{1}}p_{2}^{k_{2}} \cdots p_{n}^{k_{n}} n=p1k1p2k2pnkn 中,有 k 1 ≥ k 2 ≥ k 3 ≥ ⋯ ≥ k n k_1 \geq k_2 \geq k_3 \geq \cdots \geq k_n k1k2k3kn

解释:

  1. 如果不是从 2 2 2 开始的连续素数,那么如果幂次不变,把素数变成数值更小的素数,那么此时因子个数不变,但是 n n n 的数值变小了。交换到从 2 2 2 开始的连续素数的时候 n n n 值最小。
  2. 如果数值小的素数的幂次小于数值大的素数的幂,那么如果把这两个素数交换位置(幂次不变),那么所得的 n n n 因子数量不变,但是 n n n 的值变小。

另外还有两个问题,

  1. 对于给定的 n n n,要枚举到哪一个素数呢?
    最极端的情况大不了就是 n = p 1 p 2 ⋯ p n n=p_{1}p_{2} \cdots p_{n} n=p1p2pn,所以只要连续素数连乘到刚好小于等于 n n n 就可以的呢。再大了,连全都一次幂,都用不了,当然就是用不到的啦!
  2. 我们要枚举到多少次幂呢?
    我们考虑一个极端情况,当我们最小的素数的某个幂次已经比所给的 n n n(的最大值)大的话,那么展开成其他的形式,最大幂次一定小于这个幂次。unsigned long long 的最大值是 2 的 64 次方,所以我这边习惯展开成 2 的 64 次方。

细节有了,那么我们具体如何具体实现呢?
我们可以把当前走到每一个素数前面的时候列举成一棵树的根节点,然后一层层的去找。找到什么时候停止呢?

  1. 当前走到的数字已经大于我们想要的数字了

  2. 当前枚举的因子已经用不到了(和 1 1 1 重复了嘻嘻嘻)

  3. 当前因子大于我们想要的因子了

  4. 当前因子正好是我们想要的因子(此时判断是否需要更新最小 a n s ans ans

然后 dfs 里面不断一层一层枚举次数继续往下迭代就好啦~~

常见题型

求因子数一定的最小数

题目链接:https://codeforces.com/problemset/problem/27/E
题意:求最小的有 n n n 个因数的数 s s s n ≤ 1 0 3 n \leq 10^3 n103 ,保证 s ≤ 1 0 18 s \leq 10^{18} s1018
考虑质因数分解: s = ∏ i = 1 k p i a i                p i s = \prod_{i=1}^k p_i^{a_i}\;\;\;\;\;\;\;p_i s=i=1kpiaipi为质数
那么 s s s 的因数个数就会是 ∏ i = 1 k ( a i + 1 ) \prod_{i=1}^k (a_i + 1) i=1k(ai+1)
考虑最大的 p i p_i pi会是几呢?
2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 19 ∗ 23 ∗ 29 ∗ 31 ∗ 37 ∗ 41 ∗ 43 ∗ 47 = 614889782588491410 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 = 614889782588491410 23571113171923293137414347=614889782588491410约为 6.1 × 1 0 17 6.1\times 10^{17} 6.1×1017,所以 p i p_i pi最大为 53.
我们只要以因子数为 dfs 的返回条件基准,不断更新找到的最小值就可以了
上代码:

#include <stdio.h>
#define ULL unsigned long long
#define INF ~0ULL
ULL p[16] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53};

ULL ans;
ULL n;

// depth: 当前在枚举第几个素数。num: 当前因子数。
// temp: 当前因子数量为 num
// 的时候的数值。up:上一个素数的幂,这次应该小于等于这个幂次嘛
void dfs(ULL depth, ULL temp, ULL num, ULL up) {
  if (num > n || depth >= 16) return;
  if (num == n && ans > temp) {
    ans = temp;
    return;
  }
  for (int i = 1; i <= up; i++) {
    if (temp / p[depth] > ans) break;
    dfs(depth + 1, temp = temp * p[depth], num * (i + 1), i);
  }
}

int main() {
  while (scanf("%llu", &n) != EOF) {
    ans = INF;
    dfs(0, 1, 1, 64);
    printf("%llu\n", ans);
  }
  return 0;
}
求 n 以内因子数最多的数

https://zoj.pintia.cn/problem-sets/91827364500/problems/91827366061

思路同上,只不过要改改 dfs 的返回条件。注意这样的题目的数据范围,我一开始用了 int,应该是溢出了,在循环里可能就出不来了就超时了。上代码,0ms 过。注释就没必要写了上面写的很清楚了。

#include <cstdio>
#include <iostream>
#define ULL unsigned long long

int p[16] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53};
ULL n;
ULL ans, ans_num;  // ans 为 n 以内的最大反素数(会持续更新),ans_sum 为 ans
                   // 的因子数。

void dfs(int depth, ULL temp, ULL num, int up) {
  if (depth >= 16 || temp > n) return;
  if (num > ans_num) {
    ans = temp;
    ans_num = num;
  }
  if (num == ans_num && ans > temp) ans = temp;
  for (int i = 1; i <= up; i++) {
    if (temp * p[depth] > n) break;
    dfs(depth + 1, temp *= p[depth], num * (i + 1), i);
  }
  return;
}

int main() {
  while (scanf("%llu", &n) != EOF) {
    ans_num = 0;
    dfs(0, 1, 1, 60);
    printf("%llu\n", ans);
  }
  return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值