狒狒喜欢吃香蕉。这里有 n 堆香蕉,第 i 堆中有 piles[i] 根香蕉。警卫已经离开了,将在 h 小时后回来。
狒狒可以决定她吃香蕉的速度 k (单位:根/小时)。每个小时,她将会选择一堆香蕉,从中吃掉 k 根。如果这堆香蕉少于 k 根,她将吃掉这堆的所有香蕉,然后这一小时内不会再吃更多的香蕉,下一个小时才会开始吃另一堆的香蕉。
狒狒喜欢慢慢吃,但仍然想在警卫回来前吃掉所有的香蕉。
返回她可以在 h 小时内吃掉所有香蕉的最小速度 k(k 为整数)。
题目链接
暴力解法:
肯定会超时,因为测试集的数据量还是比较大的
class Solution {
public:
int minEatingSpeed(vector<int>& piles, int h) {
int n=piles.size();
sort(piles.begin(),piles.end());
//试一下纯暴力的方法
for(int k=piles[n-1];k>=1;k--){
int cnt=0;
for(int i=n-1;i>=0;i--){
cnt=cnt+piles[i]/k+(piles[i]%k?1:0);
if(cnt+i>h){
return k+1;
}
}
}
return 1;
}
};
二分法求解:
AC但是执行用时和内存消耗均为20%,不是特别理想
class Solution {
public:
bool suit(vector<int>& piles,int n,int k,int h){
int cnt=0;
for(int i=n-1;i>=0;i--){
cnt+=piles[i]/k;
if(piles[i]%k){
cnt+=1;
}
if(cnt>h){
return false;
}
}
return true;
}
int minEatingSpeed(vector<int>& piles, int h) {
int n=piles.size();
sort(piles.begin(),piles.end());
//二分法
int right=piles[n-1];
int left=1;
while(left<=right){
int mid=(left+right)>>1;
if(suit(piles,n,mid,h)){
right=mid-1;
}else{
left=mid+1;
}
}
return left;
}
};