题目:给两个长为n(1~2e5)的序列a,b,找出有多少对数满足a[i]-b[i]+(a[j]-b[j])>0且i<j。
刚开始想到这很像找逆序对,于是离散化用树状数组做,遍历
i:1~n,每次先查数组中有多少数(记m)小于等于-(a[i]+b[i]),
ans+=i-m,再存入a[i]+b[i].最后得答案。结果超时了。想了想,
这和逆序对有些不同,对于逆序对来说找到一个a[i]>a[j],只
有当i<j时它才是逆序对。但对于本题,找到一个a[i]-b[i]+
(a[j]-b[j])>0,它就是所求的一对(i!=j),这样的话不论顺序
只要不重复的找出满足条件的i,j对数即可。
令c[i]=a[i]-b[i],从小到大排序,遍历1~n,对于c[i]<=0
不用考虑(因为另一个c必大于0),c[i]>0,查找c中有多少数
(记m)小于等于-c[i],可以发现m<i,ans+=i-1-m.(只算小于
的数量,大于i的再搜后面的c[i]时会再查到,避免重复),这样
即可得到答案。