树
树是一种非线性的数据结构,它是由n个有限的节点组成的一个具有层次关系的结合。
树的特点
- 根节点,没有前驱节点;
- 除根节点外,其余节点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合 Ti (1 <= i<= m) 又是一棵与树类似的子树。每棵子树的根节点有且只有一个前驱,可以有0个或多个后继;
- 树是递归定义的。
树的基本概念
- 节点的度:一个节点含有的系数的个数称为该节点的度
- 树的度:一棵树中,最大的节点的度为树的度
- 叶子节点:度为0的节点称为叶子节点
- 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点
- 孩子节点:一个节点含有的子树的根节点称为该节点的子节点
- 根节点:一颗树中,没有双亲节点的节点
- 树的高度:树中节点的最大层次。
树型结构的表示
二叉树
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉
树组成。
二叉树的特点
- 每个节点最多有两棵子树(二叉树不存在度大于2的节点)
- 二叉树的子树有左右之分,子树的次序不能颠倒
特殊的二叉树
- 满二叉树
每一层的节点数都达到最大值,这个二叉树就是满二叉树。
如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树
- 完全二叉树
对于深度为K的,有n个结点的二叉树,
当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。
满二叉树是一种特殊的完全二叉树。
二叉树的基本操作
前序、中序、后序遍历:
//前序遍历——根左右
public void preOrder(TreeNode root){
if (root == null){
return;
}
System.out.println(root.val);
if (root.left != null){
preOrder(root.left);
}
if (root.right != null){
preOrder(root.right);
}
}
//中序遍历——左根右
public void inOrder(TreeNode root){
if (root == null){
return;
}
inOrder(root.left);
System.out.println(root.val);
inOrder(root.right);
}
//后序遍历——左右根
public void afterOrder(TreeNode root){
if (root == null){
return;
}
afterOrder(root.left);
afterOrder(root.right);
System.out.println(root.val);
}
求节点的个数
public int getSize(TreeNode root){
int size=0;
if (root == null){
return 0;
}
return getSize(root.left)+getSize(root.right)+1;
}
求叶子节点的个数
public int getLeafSize(TreeNode root){
if (root == null){
return 0;
}else if(root.left == null && root.right == null){
return 1;
}else {
int leftSubLeafSize =getLeafSize(root.left);
int rightSubLeafSize = getLeafSize(root.right);
return leftSubLeafSize+rightSubLeafSize;
}
}
求第k层节点的个数
//求第k层节点的个数
public int getKLevelSize(TreeNode root,int k){
if (root == null){
return 0;
}else if (k == 1){
return 1;
}else {
return getKLevelSize(root.left,k-1)+getKLevelSize(root.right,k-1);
}
}
获取二叉树的高度
public int getHeight(TreeNode root){
if (root == null){
return 0;
}else if (root.left == null && root.right == null){
return 1;
}else {
return Math.max(getHeight(root.left),getHeight(root.right))+1;
}
}
查找 val 所在结点,没有找到返回 null
public boolean contains(TreeNode root,int value){
/*if (root == null){
return false;
}
if (root.val == value){
return true;
}
boolean left = contains(root.left,value);
if (left) {
return true;
}
return contains(root.right,value);*/
if (root == null){
return false;
}else if (root.val == value){
return true;
}else {
boolean leftSubContains = contains(root.left,value);
if (leftSubContains){
return true;
}else {
boolean rightSubContains = contains(root.right,value);
if (rightSubContains) {
return true;
}else {
return false;
}
}
}
}
二叉树层序遍历
层序遍历是将二叉树中的元素,每一层都从左到右进行遍历输出。
借助一个队列
1、首先将二叉树的根节点添加到队列中,判断队列不为NULL,就输出队头的元素;
2、判断节点如果有孩子,就将孩子添加到队列中;
3、遍历过的节点出队列;
4、循环以上操作,直到Tree == NULL。
public void levelOrder(TreeNode root){
if (root == null){
return;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()){
TreeNode current = queue.poll();
System.out.println(current.val);
if (current.left != null){
queue.offer(current.left);
}
if (current.right != null){
queue.offer(current.right);
}
}
}
二叉树面试题
1.检查两颗树是否相同
2.另一颗树的子树
3.二叉树的最大深度
4.判断一颗二叉树是否是平衡二叉树
5.对称二叉树
6.二叉树的构建及遍历
7.二叉树分层遍历
8.二叉树的最近公共祖先
9.二叉搜索树转换成排序双向链表
10.根据前序遍历和中序遍历构造二叉树
11.根据中序遍历和后序遍历构造二叉树
12.根据二叉树创建字符串
13.之字形打印二叉树