前言
本篇文章用于记录拿到一个新的Linux服务器开始创建一个新的用户,并配置深度学习所需要的环境。
提示:以下是本篇文章正文内容,下面案例可供参考
一、创建新用户
创建用户:
进入新用户:
修改密码:
增加权限:
删除用户:
二、下载安装Anaconada
进入官网下载Anaconada
进入下载的地址路径的终端
#赋予权限
chmod +x Anaconda3-<version>-Linux-x86_64.sh
#运行
bash Anaconda3-<version>-Linux-x86_64.sh
输入yes 一直回车
如果跳过环境变量的话
#进入.bashrc文件
/home/username/.bashrc
#添加环境
export PATH=/home/anaconda3/bin:$PATH
保存更改环境变量
source ~/.bashrc
#测试
conda -V
三、创建虚拟环境并在虚拟环境当中安装所需要的cuda、cudnn和pytorch环境
#查看可以安装的cudatoolkit的所有版本都有那些
conda search cudatoolkit
#查看所有列出来的cudatoolkit的详细信息,包括版本号version,文件网址url等等
conda search cudatoolkit --info
#创建虚拟环境
conda create -n test python==3.8
#进入到虚拟环境
conda activate test
#安装cudatoolkit,下载cudatoolkit版本相当于在虚拟环境当中安装了对应的cuda版本
conda install cudatoolkit==version
#安装cudnn 下面命令会安装cuda对应的cudann对应的版本
conda install cudann
#安装所需要的pytorch版本
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
#首先进入到python
python
#然后使用下面命令进行查看cuda是否可用
import torch
torch.cuda.is_available()
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。