专转本一元函数微分学真题汇编

这篇博客汇总了专转本考试中一元函数微分学的历年真题,涵盖导数的基本概念、性质,公式及运算法则,复合函数的链式法则,隐函数的导数,以及参数方程的一阶和二阶导数问题。内容包括多个选择题和解答题,旨在帮助考生巩固微积分知识。
摘要由CSDN通过智能技术生成

导数的基本概念、性质

  1. (2001)
    ( 2003 年 ) x = 0 是 函 数 f ( x ) = { f ( x ) x      x ≠ 0 a         x = 0 的 ( ) (2003年)x=0是函数f(x)= \left\{ \begin{aligned} \frac{f(x)}{x} ~~~~x\not =0\\ a~~~~~~~ x=0 \end{aligned} \right.的() 2003x=0f(x)=xf(x)    x=0a       x=0
    ,其中f(x)具有二阶连续导数,且 f(0)=0
    (1)求a,使得g()在x=0处连续;
    (2)求g(x) .
    2001年数学

  2. (2002年)已知f(x)是可导的函数,则
    lim ⁡ h → 0 f ( h ) − f ( − h ) h \lim_{ h \to 0}{\frac{f(h)-f(-h)}{h}} h0limhf(h)f(h)
    A、f’(x)
    B、f’(0)
    C、2f’(0)
    D、2f’(x)
    2002年转本数学

  3. (2002年)已知f(X)在(一 0,+00)内是可导函数,则(f(x)- f(-x))'一定是
    A、奇函数
    B、偶函数
    C、非奇非偶函数
    D、不能确定奇偶性
    2002年转本数学

  4. (2002年)设
    f ( x ) = { ( 1 + x ) 1 x   x ≠ 0 k         x = 0 的 ( ) f(x)= \left\{ \begin{aligned} {(1+x)^{\frac{1}{x}}} ~x\not =0\\ k~~~~~~~ x=0 \end{aligned} \right.的() f(x)={ (1+x)x1 x=0k       x=0
    且f(x)在x=0点连续,求:
    1)k的值k
    (2) f’(x)
    2002年转本数学

  5. (2003年)已知
    f ′ ( x ) = 2 , 则 lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 − h ) h = A ‾ f'(x)=2,则 \lim_{ h \to 0}{\frac{f(x_0+h)-f(x_0-h)}{h}}=\underline{A} f(x)=2,h0limhf(x0+h)f(x0h)=A
    A、2
    B、4
    C、0
    D、-2
    2003年转本数学

  6. (2005年)设函数f(x)=在R内连续,并满足:
    f ( x ) = { f ( x ) + 2 s i n x x   x ≠ 0 a              x = 0 的 ( ) f(x)= \left\{ \begin{aligned} \frac{f(x)+2sinx}{x} ~x\not =0\\ a~~~~~~~~~~~~ x=0 \end{aligned} \right.的() f(x)=xf(x)+2sinx x=0a            x=0
    在R内连续,并满足:f(0) =0,f(0)=6,求a.
    2005年转本数学

  7. (2006年)函数
    f ( x ) = { x 2 s i n 1 x    x ≠ 0 a       x = 0 的 ( ) f(x)= \left\{ \begin{aligned} x^2{sin\frac{1}{x}} ~ ~x\not =0\\ a~~~~~x=0 \end{aligned} \right.的() f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值