导数的基本概念、性质
-
(2001)
( 2003 年 ) x = 0 是 函 数 f ( x ) = { f ( x ) x x ≠ 0 a x = 0 的 ( ) (2003年)x=0是函数f(x)= \left\{ \begin{aligned} \frac{f(x)}{x} ~~~~x\not =0\\ a~~~~~~~ x=0 \end{aligned} \right.的() (2003年)x=0是函数f(x)=⎩⎨⎧xf(x) x=0a x=0的()
,其中f(x)具有二阶连续导数,且 f(0)=0
(1)求a,使得g()在x=0处连续;
(2)求g(x) .
-
(2002年)已知f(x)是可导的函数,则
lim h → 0 f ( h ) − f ( − h ) h \lim_{ h \to 0}{\frac{f(h)-f(-h)}{h}} h→0limhf(h)−f(−h)
A、f’(x)
B、f’(0)
C、2f’(0)
D、2f’(x)
-
(2002年)已知f(X)在(一 0,+00)内是可导函数,则(f(x)- f(-x))'一定是
A、奇函数
B、偶函数
C、非奇非偶函数
D、不能确定奇偶性
-
(2002年)设
f ( x ) = { ( 1 + x ) 1 x x ≠ 0 k x = 0 的 ( ) f(x)= \left\{ \begin{aligned} {(1+x)^{\frac{1}{x}}} ~x\not =0\\ k~~~~~~~ x=0 \end{aligned} \right.的() f(x)={ (1+x)x1 x=0k x=0的()
且f(x)在x=0点连续,求:
1)k的值k
(2) f’(x)
-
(2003年)已知
f ′ ( x ) = 2 , 则 lim h → 0 f ( x 0 + h ) − f ( x 0 − h ) h = A ‾ f'(x)=2,则 \lim_{ h \to 0}{\frac{f(x_0+h)-f(x_0-h)}{h}}=\underline{A} f′(x)=2,则h→0limhf(x0+h)−f(x0−h)=A
A、2
B、4
C、0
D、-2
-
(2005年)设函数f(x)=在R内连续,并满足:
f ( x ) = { f ( x ) + 2 s i n x x x ≠ 0 a x = 0 的 ( ) f(x)= \left\{ \begin{aligned} \frac{f(x)+2sinx}{x} ~x\not =0\\ a~~~~~~~~~~~~ x=0 \end{aligned} \right.的() f(x)=⎩⎨⎧xf(x)+2sinx x=0a x=0的()
在R内连续,并满足:f(0) =0,f(0)=6,求a.
-
(2006年)函数
f ( x ) = { x 2 s i n 1 x x ≠ 0 a x = 0 的 ( ) f(x)= \left\{ \begin{aligned} x^2{sin\frac{1}{x}} ~ ~x\not =0\\ a~~~~~x=0 \end{aligned} \right.的() f(x)