1.问题
图的m着色问题。给定无向连通图G和m种颜色,用这些颜色给图的顶点着色,每个顶点一种颜色。如果要求G的每条边的两个顶点着不同颜色。给出所有可能的着色方案;如果不存在,则回答“NO”。
2.解析
设G有n个顶点,将顶点编号为1.2,…,n,则搜索空间为深度n的m叉完全树,将颜色编号为1.2,…m,结点<x_1.x_2.…x_k>(x_1,x_2…….X._kE{1…m}),1≤k≤n表示顶点1的颜色x_1,顶点2的颜色x_2,…,顶点k的颜色x_k
3.设计
if (t > n)
{
//当最后一个点被着色后,此时i大于n,即所有点已染色完成
//打印出此种方案的结果
}
else
{
//开始给一个点添加颜色,同时判断其可行性,
for (int i = 1; i <= m; i++)
{
//给改点图上m号颜色
//若此种颜色可行,即执行进行深层次的着色
//将该点恢复到原来的状态
}
}
4.分析
时间复杂度O(nm^n)
5.源码
https://github.com/8455580/homework/blob/main/12/12.cpp