算法分析作业12

本文探讨了图的m着色问题,即如何在无向连通图中给每个顶点分配不同颜色,使得相邻顶点颜色不同。通过深度n的m叉完全树来表示搜索空间,并提供了相应的算法设计,包括当所有顶点着色完成后输出方案,以及在着色过程中判断颜色可行性。该问题的时间复杂度为O(nm^n)。最后,给出了问题的源码实现链接。
摘要由CSDN通过智能技术生成

1.问题

图的m着色问题。给定无向连通图G和m种颜色,用这些颜色给图的顶点着色,每个顶点一种颜色。如果要求G的每条边的两个顶点着不同颜色。给出所有可能的着色方案;如果不存在,则回答“NO”。

2.解析

设G有n个顶点,将顶点编号为1.2,…,n,则搜索空间为深度n的m叉完全树,将颜色编号为1.2,…m,结点<x_1.x_2.…x_k>(x_1,x_2…….X._kE{1…m}),1≤k≤n表示顶点1的颜色x_1,顶点2的颜色x_2,…,顶点k的颜色x_k

3.设计

if (t > n)
	{
		//当最后一个点被着色后,此时i大于n,即所有点已染色完成
		//打印出此种方案的结果
	}
	else
	{
		//开始给一个点添加颜色,同时判断其可行性,
		for (int i = 1; i <= m; i++)
		{
			//给改点图上m号颜色
			//若此种颜色可行,即执行进行深层次的着色
			//将该点恢复到原来的状态
		}
	}

4.分析

时间复杂度O(nm^n)

5.源码

https://github.com/8455580/homework/blob/main/12/12.cpp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值