D. Maximum Sum of Products
time limit per test2 seconds
memory limit per test256 megabytes
input standard input
outpu tstandard output
You are given two integer arrays a and b of length n.
You can reverse at most one subarray (continuous subsegment) of the array a.
Your task is to reverse such a subarray that the sum ∑i=1nai⋅bi is maximized.
Input
The first line contains one integer n (1≤n≤5000).
The second line contains n integers a1,a2,…,an (1≤ai≤107).
The third line contains n integers b1,b2,…,bn (1≤bi≤107).
Output
Print single integer — maximum possible sum after reversing at most one subarray (continuous subsegment) of a.
Examples
input
5
2 3 2 1 3
1 3 2 4 2
output
29
input
2
13 37
2 4
output
174
input
6
1 8 7 6 3 6
5 9 6 8 8 6
output
235
Note
In the first example, you can reverse the subarray [4,5]. Then a=[2,3,2,3,1] and 2⋅1+3⋅3+2⋅2+3⋅4+1⋅2=29.
In the second example, you don’t need to use the reverse operation. 13⋅2+37⋅4=174.
In the third example, you can reverse the subarray [3,5]. Then a=[1,8,3,6,7,6] and 1⋅5+8⋅9+3⋅6+6⋅8+7⋅8+6⋅6=235.
思路:
也就是说,从以5为中心反转区间时,新的和可以从上一步的和转变过来,如此复杂度就降到了O(n^2),还要注意 数组的长度是 奇数 还是 偶数。
AC代码:
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <set>
#include <unordered_set>
#include <map>
#include <unordered_map>
#include <list>
#include <vector>
#include <stack>
#include <queue>
#include <ctime>
#include <cstdlib>
#include <sstream>
#include <functional>
#include <time.h>
using namespace std;
#define ll long long //__int64 __int128
#define ull unsigned long long
#define pb push_back
#define eb emplace_back
#define mst(a, b) memset(a, b, sizeof(a))
#define max(a, b) (a>b? a:b)
#define min(a, b) (a<b? a:b) //a&((a-b)>>31)|b&(~(a-b)>>31)
#define closeSync std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define mCase int T; scanf("%d", &T); for(int Case=1;Case<=T;++Case)
#define P pair<ll, ll>
#define maxn 200005
const int INF=0x3f3f3f3f; //0x7f7f7f7f
const long long LINF=0x3f3f3f3f3f3f3f3f; //0x7f7f7f7f7f7f7f7f
const double PI=acos(-1.0);
const double eps=1e-6;
const int mod=1000000007; // 998244353
//clock_t start=clock(); clock_t end=clock(); printf("time=%f\n",(double)(end-start)/CLOCKS_PER_SEC);
//gcd(a,b)*lcm(a,b)=a*b
ll gcd(ll a, ll b){ return b?gcd(b, a-a/b*b):a;}
ll lcm(ll a, ll b){ return a*b/gcd(a, b);}
ll qmul(ll a, ll b){ ll r=0; while(b){ if(b&1) r=(r+a)%mod; b>>=1; a=(a+a)%mod;} return r;}
ll Kpow(ll x, ll n){ ll re=1; for(;n;n>>=1) { if(n&1) { re*=x; re=re-re/mod*mod;} x*=x; x=x-x/mod*mod;} return re;}
ll Kpow(ll x, ll n, ll p){ ll re=1; for(;n;n>>=1) { if(n&1) { re*=x; re=re-re/p*p;} x*=x; x=x-x/p*p;} return re;}
int P_num[700005], P_cnt; //664579 in 1e7, 5761455 in 1e8
bool isP[10000007];
void GetPrime(int Pn){
memset(isP, 1, sizeof(isP)), isP[1]=P_cnt=0;
for(int i=2;i<=Pn;++i){
if(isP[i]) P_num[++P_cnt]=i;
for(int j=1;j<=P_cnt && i*P_num[j]<=Pn;++j){
isP[i*P_num[j]]=0;
if(i%P_num[j]==0) break;
}
}
}
ll n, l, r;
ll s[200005];
ll sum[200005];
ll t[200005];
void work(){ //主程序 其余不用管
cin>>n;
for(int i=1;i<=n;++i) cin>>s[i];
for(int i=1;i<=n;++i) cin>>t[i];
for(int i=1;i<=n;++i) sum[i]=sum[i-1]+s[i]*t[i]; // 前缀和
ll re=sum[n]; // 默认最大值是没有区间翻转的时候
for(int i=1;i<=n;++i){
ll nw=s[i]*t[i];
for(int l=i-1, r=i+1; l>0 && r<=n; --l, ++r){
nw+=s[l]*t[r]+s[r]*t[l];
re=max(re, sum[l-1]+sum[n]-sum[r]+nw);
}
nw=0;
for(int l=i, r=i+1; l>0 && r<=n; --l, ++r){
nw+=s[l]*t[r]+s[r]*t[l];
re=max(re, sum[l-1]+sum[n]-sum[r]+nw);
}
}
cout<<re<<endl;
}
int main()
{
//closeSync;
work();
return 0;
}