PTA-玩转二叉树 (25 分)
给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。
样例
7
1 2 3 4 5 6 7
4 1 3 2 6 5 7
输出
4 6 1 7 5 3 2
。
已知先序遍历,那么根节点就是按顺序给出的,f[0]即为根节点,从先序遍历得到根节点root,去中序遍历中找到这个root,root左边即为root的左子树,root的右边即为root的右子树。
#include <bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
#define pq priority_queue
#define eps 1e-10
#define PI acos(-1.0)
int n;
const int maxn = 35;
int f[maxn], m[maxn];
struct node{
int l, r;
}w[maxn];
//中序遍历左子树下标,先序遍历左子树下标
int built(int la, int ra, int lb, int rb){
if(la > ra)
return 0;
int root, p1, p2;
root = f[lb];
p1 = la;
while(m[p1] != root) p1++;
p2 = p1 - la;//左子树的长度
w[root].l = built(la, p1 - 1, lb + 1, lb + p2);
w[root].r = built(p1 + 1, ra, lb + p2 + 1, rb);
return root;
}
void bfs(int root){
vector<int> v;
queue<int> q;
q.push(root);
while(!q.empty()){
int cur = q.front();
q.pop();
v.pb(cur);
if(w[cur].r != 0) q.push(w[cur].r);
if(w[cur].l != 0) q.push(w[cur].l);
}
for(int i = 0; i < v.size(); i++){
if(i != v.size() - 1)
printf("%d ", v[i]);
else
printf("%d\n", v[i]);
}
}
int main(){
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d", &m[i]);
for(int i = 0; i < n; i++) scanf("%d", &f[i]);
built(0, n - 1, 0, n - 1);
bfs(f[0]);
return 0;
}