什么是分布式系统唯一ID
可能有的小伙伴没有接触过分布式系统,也就没有什么概念,简单通俗的讲:一个程序同时分布在两台服务器上并且同时在运行,这个时候要保证两台服务器的处理数据一致性,那么对应的数据ID应该要全局唯一,这样才能知道告诉程序处理哪条数据,并且保持每台服务器上面的数据一致。
分布式系统唯一ID的生成要求
在分布式高并发的应用场景中,ID的生成不像小项目,单纯依靠数据库自增就可以解决,所以满足以下特点才是最优的:
- 分布式ID生成方案需要满足全局唯一的特性,这个是基本要求,ID不能重复
- 尽量是数字类型并趋势递增,保证mysql写入性能(索引)
- 长度尽可能短,能够提高查询效率
- ID生成足够快,满足高并发的要求
- ID不要连续,保证信息的安全性,但是又希望能够趋势递增
分布式ID生成方案
1.UUID
特点:
- 全球唯一
- 生成方便快捷
- 不连续
缺点:作为小项目的ID不存在什么问题,但是作为分布式系统的ID,就存在一些缺点,不利于MySql索引的修改和数据的查询,因为:
- ID太长
- 生成的是字符串,不是数字,可读性差
- 不是趋势递增
- 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露
代码实现:
String str = UUID.randomUUID().toString().toUpperCase().replace("-", "").toLowerCase();
2.数据库主键自增
数据库主键自增,一般针对MySql(免费,分布式系统可能分库,用Oracle也太浪费钱),用数据库自增主键有以下优点:
- 实现简单(数据库设置参数即可)
- ID是数字的,并且自增,和MySql特性完美契合
- 具有一定的业务可读性
局限性:
- 步长一般是当前数据库的数量,步长一旦确定了,不方便扩容(当然也可以先预留一些扩容的位置,但是预留多少又是个问题,多了ID间隔大,浪费,小了怕不够),扩容也可以让偏移量为超过已用id的数,然后修改所有数据库服务器的步长,但是当数据库较多时,比较麻烦
- 强依赖DB,当DB异常时整个系统不可用,属于致命问题。配置主从复制可以尽可能的增加可用性,但是数据一致性在特殊情况下难以保证。主从切换时的不一致可能会导致重复发号。
- ID发号性能瓶颈限制在单台MySQL的读写性能
实现过程:
-- mysql
set global auto_increment_increment=2; -- 步长
set global auto_increment_offset=5; -- 初始值偏移量(这个值目前没起作用,有待考究)
-- oralce用Sequence
CREATE SEQUENCE SEQ_TEST_ID
MINVALUE 5
MAXVALUE 999999999999
START WITH 5 -- 初始值偏移量
INCREMENT BY 2 -- 步长
NOCYCLE
nocache;
3.Snowflake雪花算法
核心思想:使用一个 64 bit 的 long 型的数字作为全局唯一 id
snowflake的结构特点如下(每部分用-分开):
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
- 第一位为未使用,为0
- 接下来的41位为毫秒级时间(41位的长度可以使用69年)
- 后面5位是datacenterId和5位workerId(10位的长度最多支持部署1024个节点)
- 最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)
一共加起来刚好64位,为一个Long型(转换成十进制字符串后长度最多19位)
优点:
- 每秒能够生成百万个不同的ID,性能佳
- 时间戳值在高位,中间是固定的机器码,自增的序列在地位,整个ID是趋势递增的
- 能够根据业务场景数据库节点布置灵活挑战bit位划分,灵活度高
缺点:
- 强依赖于机器时钟,如果时钟回拨,会导致重复的ID生成,所以一般基于此的算法发现时钟回拨,都会抛异常处理,阻止ID生成,这可能导致服务不可用
- 在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况
实现:
- Twitter开源的snowflake算法
- Mongodb的objectID
- 百度UidGenerator
- 美团的Leaf
4.百度UidGenerator
UidGenerator 提供了两种生成唯一ID方式,分别是 DefaultUidGenerator 和 CachedUidGenerator,官方建议如果有性能考虑的话使用 CachedUidGenerator 方式实现。
UidGenerator 也是基于雪花算法snowflake演变而来,只不过它们又有所区别。不同的是UidGenerator 由 1-28-22-13 的格式进行划分。如下表示:
0 - 0000000000 0000000000 00000000 - 0000000000 0000000000 00 - 0000000000000
特点:
- 第1位仍然占用1bit,其值始终是0。
- 第2位开始的28位是时间戳,28-bit位可表示2^28个数,这里不再是以毫秒而是以秒为单位,每个数代表秒则可用(1L<<28)/ (360024365) ≈ 8.51 年的时间。
- 中间的22位 workId (数据中心+工作机器)则由 22-bit位组成,可表示 2^22 = 4194304个工作ID
- 最后由13-bit位构成自增序列,可表示2^13 = 8192个数
其中 workId (机器 id),最多可支持约420w次机器启动。内置实现为在启动时由数据库分配(表名为 WORKER_NODE),默认分配策略为用后即弃,后续可提供复用策略。
DROP TABLE IF EXISTS WORKER_NODE;
CREATE TABLE WORKER_NODE
(
ID BIGINT NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
HOST_NAME VARCHAR(64) NOT NULL COMMENT 'host name',
PORT VARCHAR(64) NOT NULL COMMENT 'port',
TYPE INT NOT NULL COMMENT 'node type: ACTUAL or CONTAINER',
LAUNCH_DATE DATE NOT NULL COMMENT 'launch date',
MODIFIED TIMESTAMP NOT NULL COMMENT 'modified time',
CREATED TIMESTAMP NOT NULL COMMENT 'created time',
PRIMARY KEY(ID)
)
COMMENT='DB WorkerID Assigner for UID Generator',ENGINE = INNODB;
DefaultUidGenerator 就是正常的根据时间戳和机器位还有序列号的生成方式,和雪花算法很相似,对于时钟回拨也只是抛异常处理。仅有一些不同,如以秒为为单位而不再是毫秒
CachedUidGenerator 实现 使用 RingBuffer 缓存生成的id。数组每个元素成为一个slot。RingBuffer容量,默认为Snowflake算法中sequence最大值(2^13 = 8192)。可通过 boostPower 配置进行扩容,以提高 RingBuffer 读写吞吐量。
CachedUidGenerator采用了双RingBuffer,Uid-RingBuffer用于存储Uid、Flag-RingBuffer用于存储Uid状态(是否可填充、是否可消费)。
由于数组元素在内存中是连续分配的,可最大程度利用CPU cache以提升性能。但同时会带来「伪共享」FalseSharing问题,为此在Tail、Cursor指针、Flag-RingBuffer中采用了CacheLine 补齐方式。
RingBuffer填充时机:
初始化预填充 RingBuffer初始化时,预先填充满整个RingBuffer。
即时填充 Take消费时,即时检查剩余可用slot量(tail - cursor),如小于设定阈值,则补全空闲slots。阈值可通过paddingFactor来进行配置
周期填充 通过Schedule线程,定时补全空闲slots。可通过scheduleInterval配置,以应用定时填充功能,并指定Schedule时间间隔
5.美团的Leaf方案
Leaf-segment
依赖数据库,但是每次取id是取一个号段(长度step),用表来实现。biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度。
优点:
- Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
- ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
- 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
- 可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来。
缺点:
- ID号码不够随机,能够泄露发号数量的信息,不太安全,比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量,这个是不能忍受的
- TP999数据波动大,当号段使用完之后还是会hang在更新数据库的I/O上,tg999数据会出现偶尔的尖刺。
- DB宕机会造成整个系统不可用
双buffer优化
Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。
为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标
采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复
- 每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
- 每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新
Leaf-snowflake方案
Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即是“1+41+10+12”的方式组装ID号。对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。Leaf-snowflake是按照下面几个步骤启动的:
- 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)
- 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务
- 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务
特点:
- 弱依赖ZooKeeper(需要通过ZK分发workId,在本机文件系统上缓存一个workerID文件,可以提高系统可用性)
- 和所有类snowflake算法一样,需要解决时钟问题
实现:
// Leaf-segment批量取id
Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit
// Leaf-segment jvm缓存id
AtomicLong atomicLong = new AtomicLong(maxId);
if(atomicLong.get()<=maxId+step) {//如果小于当前号段最大值
id = atomicLong.getAndIncrement();
}
6.Redis方案实现
Redis的INCR命令能够将key中存储的数字值增一,得益于此操作的原子特性,我们能够巧妙地使用此来做分布式ID地生成方案,还可以配合其他如时间戳值、机器标识等联合使用
优点:
- 有序递增,可读性强
- 能够满足一定性能
缺点:
- 强依赖于Redis,可能存在单点问题
- 占用宽带,而且需要考虑网络延时等问题带来地性能冲击。
实现:
//自增方法
public long incr(String key, long delta) {
if (delta < 0) {
throw new RuntimeException("递增因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, delta);
}
// 实际使用的redisTemplate,可以直接注入到代码中,直接操作redis
@Bean
public RedisTemplate<String, Object> redisTemplate() {
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
RedisSerializer<?> stringSerializer = new StringRedisSerializer();
redisTemplate.setKeySerializer(stringSerializer);
redisTemplate.setValueSerializer(stringSerializer);
redisTemplate.setHashKeySerializer(stringSerializer);
redisTemplate.setHashValueSerializer(stringSerializer);
redisTemplate.setDefaultSerializer(stringSerializer);
redisTemplate.setConnectionFactory(redisConnectionFactory());
return redisTemplate;
}
需要注意的一点是:
GenericJackson2JsonRedisSerializer、Jackson2JsonRedisSerializer 以及JdkSerializationRedisSerializer序列化方式不支持INCR命令,会抛出value is not an integer or out of range异常,因为这些序列化方式在redis里面存储的是字符串,不支持加减操作
GenericToStringSerializer、StringRedisSerializer将字符串的值直接转为字节数组,所以保存到redis中是数字,所以可以进行加减
文章转载自:https://www.cnblogs.com/yanghanwen/p/12249111.html