题意
从n个数中选出一些数,要求这些数中任意两个数其中一个是另一个的倍数,求能选出的最大值。
题解
用dfs枚举每个数的约束,然后再从小到大将ai重新排个序,用dp求出每个数为最大值可能封装的互为倍数的数一共有多少个。
正确代码
#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long ll;
#define M_PI 3.14159265358979323846
int mp[10000005],p[10000005];
int a[200005],dp[10000005];
int mx,now;
void prim(int n)
{
int cnt=0;
mp[1]=1;
for(int i=2;i<=n;i++)
{
if(!mp[i]) p[++cnt]=i,mp[i]=i;
for(int j=1;j<=cnt&&i*p[j]<=n;j++)
{
mp[i*p[j]]=p[j];
if(i%p[j]==0) break;
}
}
}
void dfs(int x,int y)
//枚举约数的方法可以质因数分解枚举每个质因数的指数然后进行dfs
{
if(x==1)
{
if(y!=now)
mx=max(mx,dp[y]);
return;
}
int p=mp[x],num=0;
while(x%p==0) num++,x/=p;
for(int i=0;i<=num;i++)
{
dfs(x,y);
y*=p;
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[a[i]]++;
}
sort(a+1,a+n+1);
n=unique(a+1,a+n+1)-a-1;
prim(a[n]);
int ans=0;
for(int i=1;i<=n;i++)
{
mx=0,now=a[i];
dfs(a[i],1);
dp[a[i]]+=mx;
ans=max(ans,dp[a[i]]);
}
printf("%d\n",ans);
return 0;
}