笔记-基于信道状态信息的井下人员行为识别方法研究

本文介绍了一种基于CSI的井下人员行为识别方法,通过SOM聚类和滤波技术预处理数据,使用CNN进行行为分割和识别。实验结果显示,这种方法在井下环境中表现出高精度,优于Wi-ACR和HDFi方法,平均识别精度达到86%以上。
摘要由CSDN通过智能技术生成

工作

提出了一种基于CSI的井下人员行为识别方法

内容

首先引入SOM聚类和多种滤波算法增强信号特征,去除井下环境噪声;其次,利用窗函数和卷积神经网络(CNN)将数据分割问题转换为状态分类问题,提高行为分割精度;最后,利用CNN输出行为识别结果。

过程

(1)数据采 集阶段:采集人员执行行为时的CSI数据;(2)数据预处理阶段:增强信号特征、去除噪声数据;(3)数据分割阶段:预处理之后的CSI中包含有行为执行区 域和初始区域,行为发生时CSI幅值变化大于1/4, 根据这一特点本方法在数据分割模块引入状态判断 模型识别行为执行时的CSI片段,并将其切割出来; (4)行为识别阶段:将切割后CSI行为数据片段输入 CNN进行处理,输出识别出的行为类型。

(2)数据预处理阶段

选用PCA算法降低环境因素导致的多径干扰。(选 用PCA算法将采集到的CSI数据进行数据重组并 提取数据的主要特征分量,在保证不丢失大量行为 数据的前提下降低环境因素导致的多径扰。)

斯低通滤波器去除电力系统噪声。

为尽可能保留由人员行为引起的 CSI变化的同时滤除环境噪声,采用了小波去噪方法。

(3)数据分割阶段

将数据分割问题转变为了状态分类问题,引入了一 种基于窗口函数和CNN的状态判断模型算法。

具体:
该算法思想是将CSI数据划分为成大小相等的窗口,
窗口状态状态判断模型网络架构为CNN模型,其网络框架结构。状态判断模型训练过程:将数据 输入5层堆叠CNN提取数据特征,数据处理完成后将结果输入LSTM模块,再将经过LSTM模块处理的数据输入全连接层对提取特征数据进行学习,最后将数据输入SoftMax层将数 据映射到4种窗口状态。
 

(4)行为识别模块
采用CNN进行行为识别。将行为数据片 段作为输入,判断得到的行为概率分布作为输出。

在输入层将 数据以的规格输入卷积层进行训练,卷积层由5层 Mlpconv组成,选用LeakyReLu作为激活函数,VALID 为padding参数。卷积完成后将特征数据输入到 SoftMax层将其映射到10种行为,输出识别到的行 为类别及概率分布。

实验验证

结果

与采用的Wi-ACR方法和HDFi方法做对比,并统计各行为识别准确率。针对井下环境中的10种不安全行为,由于更精准的行为分割数据和 CNN自身的优越性,识别准确率优于其他2种,且平均识别精度达86%以上,最高可达93%。

选用CSI幅值信息描述行为特点, 基于状态判断模型进行数据分割,引入CNN建立行为的分类器。
预处理阶段利用SOM聚类和多种滤波方法 有效降低了井下环境特殊干扰,提高了行为识别准确率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值