自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 随机梯度下降

import numpy as npimport mathimport randomx = np.random.choice(np.array([2104, 1600, 2400, 1416, 3000]),5)x1 = np.random.choice(np.array([3,3,3,2,4]),5)t = np.random.choice(np.array([400, 330, 369, 232, 540]),5)a = 0.0000100error = 0.00001dert =

2021-11-12 09:30:49 425

原创 机器学习之决策树(未完成)

决策树例题为选西瓜问题,情景如下:我们要对"这是好瓜吗?“这样的问题进行决策时,通常会进行一系列的判断或"子决策"我们先看"它是什么颜色?”,如果是"青绿色",则我们再看"它的根蒂是什么形态?",如果是"蜷缩",我们再判断"它敲起来是什么声音?",最后?我们得出最终决策:这是个好瓜.这个决策过程如图所示.决策树基本流程:分析 根据流程可以看出,实际上是一个递归过程,在多次的决策中确定自己的节点。那么会有三种导致递归返回的结果:①当前节点所包含的所有样品属于同一类别,无需划分。②当前属性集

2021-10-26 19:53:20 214

原创 paddlepaddle强化学习作业

强化学习import gym, osfrom itertools import countimport paddleimport paddle.nn as nnimport paddle.optimizer as optimimport paddle.nn.functional as Ffrom paddle.distribution import Categoricaldevice = paddle.get_device()env = gym.make("CartPole-v0")

2021-10-21 17:03:34 171

原创 paddlepaddle!!!作业

图像实现import paddlefrom paddle.nn import Linearimport paddle.nn.functional as Fimport osimport numpy as npimport matplotlib.pyplot as plttrain_dataset = paddle.vision.datasets.MNIST(mode='train')train_data0 = np.array(train_dataset[0][0])train_labe

2021-10-19 19:51:46 248

原创 作业..................

简单算循环实现代码:import numpy import mathimport randomimport matplotlib.pyplot as pltx = 0.0000y = 1.0000for i in range(0, 10): y = 1.1 * y - 0.2 * x / y x = x + 0.1 print(y) print(x)效果图:贝叶斯问题描述:在夏季,某公园男性穿凉鞋概率为1/2, 女性穿凉鞋概率为2/3, 并且该公园中男女比例通常为2:1,

2021-09-15 21:25:40 201

原创 算法作业二

import randomimport mathx1 = [[1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [1.0, 1.0, 1.0]]t1 = [0.0, 0.0, 0.0, 1.0]dert = random.random()error = 0.01n = 0.001wc = [1.0, 1.0, 1.0]def ruamod(x): return 1.0 / (1.0 + (1.0 / float(math.

2021-09-10 09:44:51 106

原创 numpy基础用法

入门numpy基础操作

2021-09-03 21:50:49 1703

原创 优化算法1

import numpyimport randomdata1 = random.random()data2 = random.random()data3 = random.random()s1 = random.random()s2 = random.random()s3 = random.random()a = 0.00001wc = 0.00001x = numpy.array([[2104], [1600], [2400], [1416], [3000]])t = numpy.

2021-09-03 09:42:40 113

原创 CTF命令执行小总结

文章目录简介命令执行常见命令及解释执行常见系统命令函数绕过姿势绕过总结函数套娃特殊题无字母无数字命令执行通过文件包含、文件上传拿shell进行命令执行FFI类型题例题ctfshow web31ctfshow web124简介命令执行命令执行:攻击者可以通过web应用执行系统命令,从而获取敏感信息,甚至拿到shell权限等等,造成的原因是Web服务器对用户输入命令安全检测不足,导致恶意代码被执行。常见命令及解释执行常见系统命令常见的系统命令可以进行命令执行:awk 格式:awk'{printf

2021-05-18 19:48:54 1954 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除