这三个条件鬼能想到啊。。。
Si表示1~i中被选出的数的个数。
S0 = 0
需要满足的差分约束条件:
Si >= Si-1
Si - Si-1 <= 1
对于区间[a, b], Sb - Sa-1 >= C 这是题目中要求。
现在需要求S50001的最小值
#include <iostream>
#include <cstring>
using namespace std;
/*
对于这种区间问题,我们可以想到的几种方法中,前缀和最适用这一题
sum_i表示 1~i 中被我们选出的数的个数
(1)sum_i >= sum_i-1
(2)sum_i - sum_i-1 <= 1 -> sum_i-1 >= sum_i - 1
(3)sum_bi - sum_ai-1 >= ci -> sum_bi >= sum_ai-1 + ci
题目要求最小值,因此我们要求的是不等式链的所有下界的最大值,图论中最远路
*/
// 三种情况,每种情况五万条边
const int N = 50010, M = 3 * N;
int n;
int h[N], e[M], w[M], ne[M], idx;
int dist[N], q[N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
void spfa() {
int hh = 0, tt = 1;
memset(dist, -0x3f, sizeof dist);
dist[0] = 0;
q[0] = 0; //前缀和的递推关系保证了0与所有点相连,0就是超级源点
while (tt != hh) {
int t = q[hh++];
if (hh == N) hh = 0;
st[t] = false;
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
if (dist[j] < dist[t] + w[i]) {
dist[j] = dist[t] + w[i];
if (!st[j]) {
st[j] = true;
q[tt++] = j;
if (tt == N) tt = 0;
}
}
}
}
}
int main() {
memset(h, -1, sizeof h);
scanf("%d", &n);
//(1)和(2)
for (int i = 1; i < N; ++i) {
add(i - 1, i, 0);
//↑这一条加边,会让0得以连接到所有的点,因此0成为了我们的超级源点
// Si - 1 <= Si-1
// 由于求得是最长路,需要换成>=
// 所以i到i-1连一条长度为-1得边。
add(i, i - 1, -1);
}
//(3)
while (n--) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
++a, ++b;
//a和b可能会取0,为了方便做前缀和,防止-1越界,我们把范围全体加1
//大家都加了1,就相当于大家都没加1,不影响答案
add(a - 1, b, c);
}
spfa();
printf("%d\n", dist[50001]);
return 0;
}