差分约束:雇佣收银员

原题链接:https://www.acwing.com/problem/content/395/

#include <iostream>
#include <cstring>
using namespace std;

/*
num[i]表示i时刻有多少人申请上岗,x[i]为i时刻实际上岗的人数,s为x的前缀和数组。
(1)上岗人数不能负数,即 s[i]−s[i−1]>=0
(2)实际上岗人数不能超过申请人数,即 s[i]−s[i−1]<=num[i]
(3)i时刻所在人数,即[i−7,i]区间内的上岗人数 >= 最小需求 R
    当 i >= 8 时,s[i]−s[i−8]>=R[i]
    当 i <= 7 时,s[i]+s[24]−s[16+i]>=R[i]
就有了差分约束:
(1)s[i] >= s[i-1] + 0
(2)s[i-1] >= s[i] - num[i]
(3)s[i] >= s[i-8] + R[i]
   s[i] >= s[16+i] + R[i] - s[24]

对于最后一个不等式中的s[24],我们把它看做常数c,在数据范围内暴力枚举就好了

// 对于最后一个不等式中的s24还需要有限制, S24>=c, S24<=4
s[24] == c: s[24] >= s[0] + c 且 s[24] <= s[0] + c -> s[0] >= s[24] - c

由(1)可知,0可以作为超级源点,到达所有的点。0可以到1,1可以到2....
*/
const int N = 30, M = 100;
int T, n;
int h[N], e[M], w[M], ne[M], idx;
int dist[N], cnt[N], q[N];
bool st[N];
int R[N], num[N];

void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
void build(int c) {
    memset(h, -1, sizeof h);
    idx = 0;

    add(0, 24, c), add(24, 0, -c);
    for (int i = 1; i <= 24; ++i) {
        add(i, i - 1, -num[i]);
        add(i - 1, i, 0);
    }
    for (int i = 8; i <= 24; ++i) add(i - 8, i, R[i]);
    for (int i = 1; i <= 7; ++i) add(i + 16, i, R[i] - c);
}
bool spfa(int c) {
    build(c);

    memset(dist, -0x3f, sizeof dist);
    memset(cnt, 0, sizeof cnt);
    memset(st, 0, sizeof st);

    int hh = 0, tt = 1;
    q[0] = 0;
    dist[0] = 1, st[0] = true;

    while (tt != hh) {
        int t = q[hh++];
        if (hh == N) hh = 0;
        st[t] = false;

        for (int i = h[t]; ~i; i = ne[i]) {
            int j = e[i];
            if (dist[j] < dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;

                if (cnt[j] >= 25) return false;

                if (!st[j]) {
                    st[j] = true;
                    q[tt++] = j;
                    if (tt == N) tt = 0;
                }
            }
        }
    }
    return true;
}
int main() {
    cin >> T;
    while(T--) {
        for (int i = 1; i <= 24; ++i) cin >> R[i];  //为了与前缀和下标一致,整体向后移一位
        cin >> n;
        memset(num, 0, sizeof num);
        for (int i = 0; i < n; ++i) {
            int t;
            cin >> t;
            ++num[t + 1];
        }

        //暴力枚举s24的值
        bool flag = false;
        for (int c = 0; c <= 1000; ++c) {
            if (spfa(c)) {
                cout << c << endl;
                flag = true;
                break;
            }
        }
        if (!flag) puts("No Solution");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值