离散期末试卷
一、单项选择题(每题2分,共20分)
1.( A )下面的句子哪些是命题?
A.明年10月1日是晴天.B.几点了?C.x+1=2D.这个句子是假的。
2.( A )下列哪个命题是永真式?
A.p∨~p B. p∧~pC. pD. ~p
3.( B ) ~(pÞq)的等价命题是?
A.~p∨q B.p∧~q C.~(p∧(q∧q) D.p∨(q∧q)
4.( B )设Q(x):x+1<4,那么xQ(x)是
A.真命题 B.假命题 C.悖论 D. 无法判断的命题
5.( C )A={a,b,c,d},B={1,2,3},函数f是如图集合A到B的映射,其类型是:
A.f是单射的 B.f是可逆的. C.f是处处有定义的 D.f是一一对应的
6.( A )R={(1,2),(1,3),(3,1),(1,1),(3,3),(3,2),(1,4),(4,2),(3,4)},该关系具有什么性质?
A.传递的B.对称的. C.自反的D.反对称的.
7.( D )下面是{0,1,2,3}上的关系,哪些是等价关系?
A.{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)}
B.{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)}
C.{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,2),(3,3)}
D.{(0,0),(1,1),(2,2),(3,3)}
8.( B )下面哪些集合不是偏序集?其中P(S)为有限集合S的幂集,Z为整数集.
A.(P(S),⊆) B. (Z,≠) C. (Z,≥) D.(Z+,|)
9.( C )完全图Kn的色数是多少?
A. 2 B. n-1 C. n D. 4
答案A.
二、填空题。(每空4分,共20分)
1.前缀表达式×- + 3 4 - 7 2÷12×3-6 4的值是( 4 )
2.从一付标准的52张扑克牌中必须选( 9 )张牌才能保证选出的牌中至少有3张是同花色的.
3.n个顶点.的图G有一条哈密顿回路,那么图G至少有( N )条边.
4.R是从{1,2,3}到{1,2,3,4}的关系且R={(1,1),(1,4),(2,3),(3,1),(3,4)},S是从{1,2,3,4}到{0,1,2}的关系且S={(1,0),(2,0),(3,1),(3,2),(4,1)},关系的合成S◦R=.( {(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)} )
5.设Kn是有n个顶点的完全图,则Kn有_n(n-1)/2_____条边.
三、逻辑与证明(共22分)
1.(6’)给出"如果天正在下雪,那么3+5=8"的逆命题和逆否命题,并且用逻辑符号表示每个命题答:
p:天正在下雪,q:3+5=8
原命题:pÞq,逆命题:qÞp,如果3+5=8,那么天正在下雪.逆否命题:qÞp,如果3+5不等于8,那么天没有正在下雪.
2.(8’)陈述下列论证是否正确.如果正确,验证它所基于的重言式.如不正确,写出详细理由
如果我的抽水马桶设计方案不符合建筑法规,那么我不能建造我的房子.
如果我雇佣一个有执照的承包商,那么我的抽水马桶设计方案会符合建筑法规
我雇用一个有执照的承包商.
∴我能建造我的房子
答:不正确.p:我的抽水马桶设计方案符合建筑法规,q:我能建造我的房子.
r:我雇佣一个有执照的承包商
3.(8’)证明:设A是有穷集合,A有n个元素,则P(A)有2n个元素.
四、解答题(共38分)
1、(12’)构造下面代数表达式的标号树:((2×x)+(3-(4×x)))+(x-(3×11)),并写出其先序遍历得到的前缀表达式和后序遍历得到的后缀表达式.
答:
前缀:+ + × 2 x - 3 × 4 x - x × 3 11
后缀:2 x × 3 4 x × - + x 3 11 × - +
2、(11’)画出表示{1,2,3,4,6,8,12}上的偏序{(a,b)|a整除b}的哈斯图,如果有则求出最大元和最小元,并说明是否是格及原因.
答:
没有最大元,最小元是1,不是格。
3、(15’)安排期末考试。假定要安排七门期末考试,从科目1到科目7,假定下列各对科目的考试有学生都要参加:1和2,1和3,1和4,1和7,2和3,2和4,2和5,2和7,3和4,3和6,3和7,4和5,4和6,5和6,5和7以及6和7.请建立图模型并用图着色给考试科目分配时间段。
答: