题目
题目描述
给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3]
输出:[1,3,2]
示例 2:
输入:root = []
输出:[]
示例 3:
输入:root = [1]
输出:[1]
提示:
- 树中节点数目在范围 [0, 100] 内
- -100 <= Node.val <= 100
进阶:递归算法很简单,你可以通过迭代算法完成吗?
原题链接
题解
解题思路
- 中序遍历:按左→中→右的顺序访问结点。
- 递归方式是系统自动维护函数栈。
- 迭代方式需要自己声明栈来存储访问过的结点。
代码实现(C)
- 递归方式:
void inorder(struct TreeNode *root, int *ans, int *index) {
if (!root) // 递归边界,结点为空时返回
return;
inorder(root->left, ans, index); // 遍历结点左孩子
// 执行到这表示当前结点的左孩子为空,递归函数返回
ans[(*index)++] = root->val; // 取当前结点的值
inorder(root->right, ans, index); // 遍历结点右孩子
}
int *inorderTraversal(struct TreeNode *root, int *returnSize) {
*returnSize = 0;
int *ans = (int *) malloc(sizeof(int) * 102);
inorder(root, ans, returnSize);
return ans;
}
- 迭代方式:
typedef struct TreeNode node;
int* inorderTraversal(node * root, int* returnSize) {
*returnSize = 0;
int* ans = malloc(sizeof(int) * 102);
// 创建栈,栈内元素为node*,即结点的指针
node ** stack = malloc(sizeof(node *) * 102);
// 栈顶结点,指向栈顶元素的下一个位置,初值为0(栈为空)
int top = 0;
while (root != NULL || top > 0) { // 结点非空或栈非空
while (root != NULL) { // 当前结点非空时
stack[top++] = root; // 进栈
root = root->left; // 遍历左孩子
}
// 执行到这,说明左孩子为空
root = stack[--top]; // 取栈顶元素
ans[(*returnSize)++] = root->val; // 记录栈顶元素
root = root->right; // 遍历右孩子
}
return ans;
}