Codeup_5972:问题 A: 【递归入门】全排列

本文介绍如何使用C语言和递归算法解决全排列问题,通过深度优先搜索遍历所有可能的排列,并提供了一个详细的解题思路和代码实现,包括输入输出样例和经验总结。
摘要由CSDN通过智能技术生成

Problem Description

排列与组合是常用的数学方法。
先给一个正整数 ( 1 < = n < = 10 )
例如n=3,所有组合,并且按字典序输出:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Input

输入一个整数n( 1 <= n <= 10)

Output

输出所有全排列
每个全排列一行,相邻两个数用空格隔开(最后一个数后面没有空格)

Sample Input

3

Sample Output

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

原题链接

解题思路

  1. 用深度优先搜索遍历所有排列方案,n个数对应n个位置。
  2. 用int型数组ans记录已选择数的位置(即全排列方案),用bool型数组visit记录某个数是否被选择。
  3. int类型变量count记录当前已经选择数字的个数,当已选数字个数为n时,表示已经形成全排列(递归边界)。
  4. 从第一个位置开始,遍历所有数字(1 ≤ i ≤ n),对每个数字i,有两条路,选择or不选择。
    1. 选择:将当前数字i加入全排列数组ans中,并设为已访问,考虑下一个位置(即count + 1)。
    2. 不选择:考虑下一个数字(即i+1)。

经验总结

  1. 当count == n时,表示已形成全排列,此时dfs应当返回。
  2. 但由于visit数组的存在,此处也可以不返回,因为[1,n]范围内的数均被访问过,dfs中的选择过程不会选择任何数。

代码实现(C)

#include <stdio.h>
#include <stdbool.h>
#include <string.h>

#define MaxSize 11

int n;
bool visit[MaxSize];    // 记录数字是否被访问过
int ans[MaxSize];       // 记录全排列方案

// 打印全排列
void print() {
    for (int i = 0; i < n; ++i) {
        if (i < n - 1)
            printf("%d ", ans[i]);
        else
            printf("%d\n", ans[i]);
    }
}

// 每进行一次DFS,选择一个数字,count记录当前已选择数字的个数
void DFS(int count) {
    if (count == n) {               // 递归边界:已经选择了n个数
        print();                    // 打印全排列
        return;
    }
    for (int i = 1; i <= n; ++i) {  // 选择1~n范围内的数字
        if (!visit[i]) {            // 如果i没被选过
            ans[count] = i;         // 选择i,加入全排列
            visit[i] = true;        // 设置i已被访问
            DFS(count + 1);     	// 继续选择下一个数字
            // 执行到这说明选择i的路已经走完,该走不选i的路线了(i++)
            visit[i] = false;       // 设置i未被访问
        }
    }

}

int main() {
    while (~scanf("%d", &n)) {
        // 初始化
        memset(visit, false, sizeof(visit));
        // 初始时选择了0个数
        DFS(0);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值