Codeup_2086:问题 A: 最大连续子序列

文章讲述了如何使用动态规划方法(dp)解决一个编程问题,给定一个整数序列,找到具有最大和的连续子序列,同时输出子序列的起始和结束元素。代码示例展示了在C++中的实现,包括输入判断、状态转移和结果输出部分。
摘要由CSDN通过智能技术生成

Problem Description

给定K个整数的序列{ N1,N2,…,NK },其任意连续子序列可表示为{ Ni,Ni+1, …, Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2,11,-4,13,-5,-2 },其最大连续子序列为{ 11,-4,13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。

Input

测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K <= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。

Output

对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

Sample Input

5
-3 9 -2 5 -4
3
-2 -3 -1
0

Sample Output

12 9 5
0 -2 -1

原题链接

解题思路

  • dp[i].data表示以i为结尾的最大连续子序列的值。
  • 状态转移方程:dp[i].data = max(dp[i-1].data + num[i],num[i])。
  • 最大连续子序列确定后,需记录区间范围。

代码实现(C++)

#include <iostream>
#include <climits>

using namespace std;

#define maxn 10005

struct dpNode {
    int data;       // 记录最大连续子序列
    int start;      // 序列第一个元素位置
    int end;        // 序列最后一个元素位置
} dp[maxn];

int num[maxn];

// 输入并判断是否全负
bool inputAndInit(int k) {
    bool negative = true;
    for (int i = 0; i < k; i++) {
        scanf("%d", &num[i]);
        if (num[i] >= 0)
            negative = false;
    }
    return negative;
}

// 状态转移方程: dp[i].data = max(dp[i-1].data + num[i],num[i])
void getDp(int k) {
    dp[0].data = num[0];
    dp[0].start = 0;
    dp[0].end = 0;
    for (int i = 1; i < k; i++) {
        // 选择最大子序列并更新范围
        if (dp[i - 1].data + num[i] > num[i]) {
            dp[i].data = dp[i - 1].data + num[i];
            dp[i].start = dp[i - 1].start;
            dp[i].end = i;
        } else {
            dp[i].data = num[i];
            dp[i].start = i;
            dp[i].end = i;
        }
    }
}

int main() {
    int k;
    while (~scanf("%d", &k) && k) {
        if (inputAndInit(k))
            printf("0 %d %d\n", num[0], num[k - 1]);
        else {
            getDp(k);
            int maxData = INT_MIN, max = -1;
            for (int i = 0; i < k; i++) {
                if (dp[i].data > maxData) {
                    maxData = dp[i].data;
                    max = i;
                }
            }
            printf("%d %d %d\n", dp[max].data, num[dp[max].start], num[dp[max].end]);
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值