Problem Description
给定K个整数的序列{ N1,N2,…,NK },其任意连续子序列可表示为{ Ni,Ni+1, …, Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2,11,-4,13,-5,-2 },其最大连续子序列为{ 11,-4,13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。
Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K <= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
Sample Input
5
-3 9 -2 5 -4
3
-2 -3 -1
0
Sample Output
12 9 5
0 -2 -1
原题链接
解题思路
- dp[i].data表示以i为结尾的最大连续子序列的值。
- 状态转移方程:dp[i].data = max(dp[i-1].data + num[i],num[i])。
- 最大连续子序列确定后,需记录区间范围。
代码实现(C++)
#include <iostream>
#include <climits>
using namespace std;
#define maxn 10005
struct dpNode {
int data; // 记录最大连续子序列
int start; // 序列第一个元素位置
int end; // 序列最后一个元素位置
} dp[maxn];
int num[maxn];
// 输入并判断是否全负
bool inputAndInit(int k) {
bool negative = true;
for (int i = 0; i < k; i++) {
scanf("%d", &num[i]);
if (num[i] >= 0)
negative = false;
}
return negative;
}
// 状态转移方程: dp[i].data = max(dp[i-1].data + num[i],num[i])
void getDp(int k) {
dp[0].data = num[0];
dp[0].start = 0;
dp[0].end = 0;
for (int i = 1; i < k; i++) {
// 选择最大子序列并更新范围
if (dp[i - 1].data + num[i] > num[i]) {
dp[i].data = dp[i - 1].data + num[i];
dp[i].start = dp[i - 1].start;
dp[i].end = i;
} else {
dp[i].data = num[i];
dp[i].start = i;
dp[i].end = i;
}
}
}
int main() {
int k;
while (~scanf("%d", &k) && k) {
if (inputAndInit(k))
printf("0 %d %d\n", num[0], num[k - 1]);
else {
getDp(k);
int maxData = INT_MIN, max = -1;
for (int i = 0; i < k; i++) {
if (dp[i].data > maxData) {
maxData = dp[i].data;
max = i;
}
}
printf("%d %d %d\n", dp[max].data, num[dp[max].start], num[dp[max].end]);
}
}
return 0;
}